Advertisement

Fueled by Symbiosis, Foraminifera have Evolved to be Giant Complex Protists

  • John J. Lee
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 16)

Abstract

One may wonder in the framework of this book, and in context with the well-balanced chapter by Stambler, why foraminifera have been singled out to be the focus of a separate chapter. The answer is simple. Foraminifera are generally less well known, and they exemplify the power by which symbiosis can drive evolution of a predisposed and malleable group of organisms. As foraminifera are relatively small, when compared with corals and other invertebrates in the same semi- and tropical well-illuminated marine habitats, they are easily overlooked. At times, they form beaches of “living” and “star-sands” (Fig. 1e), and are so abundant that they can be scooped up with a spoon. Snorklers and SCUBA divers can see them as underwater “Christmas tree ornaments” on sea grasses or on macrophyte algae (Fig. 1c). Their tests are composed of CaCO3 and they fossilize well. Testimonial to their abundance in the Tethys Sea are the mountains of fossilized limestone formed from their tests (Fig. 1a, b, d) and quarried to build the Egyptian pyramids. Also intriguing is the fact that different types of algae have driven various lines of foraminifera to evolve tens to hundreds of times larger in size and considerably more complex than their ancestors. Modern larger foraminifera are the hosts for a greater variety of symbionts than any other marine group (Lee, 2006). With respect to symbiont type, there is some specificity. Those larger foraminifera that normally host diatoms have never been observed to host dinoflagellates. Similarly, those that host dinoflagellates never host diatoms, chlorophytes, or rhodophytes and so forth.

Keywords

Planktonic Foraminifera Symbiotic Alga Large Foraminifera Algal Symbiont Symbiont Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The study was supported by PSC-CUNY Awards # 61136-00-39 & 62897-00 40.

References

  1. Anderson, O.R. and Be, A.W.H. (1976) The ultrastructure of a planktonic foraminifer, ­Globigerinoides sacculifer (Brady), and its symbiotic dinoflagellates. J. Foramin. Res. 6: 1–21.CrossRefGoogle Scholar
  2. Baker, A.C. (2003) Flexibility and specificity in coral-algal symbiosis: Diversity, ecology, and ­biogeography of Symbiodinium. Annu. Rev. Ecol. Syst. 34: 661–689.CrossRefGoogle Scholar
  3. Carpenter, W.B. (1862) Introduction to the Study of Foraminifera. Hardwicke, London, pp. 1–319.Google Scholar
  4. Chai, J. and Lee, J.J. (1999a) Initial recognition of endosymbiotic diatoms by the larger foraminifer Amphistegina lobifera. Symbiosis 26: 39–53.Google Scholar
  5. Chai, J. and Lee, J.J. (1999b) Establishment and maintenance of endosymbiotic diatoms by the larger foraminifer Amphistegina lobifera, In: E. Wagner, J. Norman, H. Greppin, J.H.P. Hackstein, R.G. Herrmann, K.V. Kowalik, H.E.A. Schenk, and J. Seckbach, (eds.) Endocytobiology VII. Universities of Freiburg and Geneva, Germany, pp. 137–152.Google Scholar
  6. Chai, J. and Lee, J.J. (2000) Recognition, establishment and maintenance of diatom endosymbioses in foraminifera, In: J.J. Lee and P.H. Muller (eds.) Advances in the Biology of Foraminifera. Micropaleontology 46(Suppl 1): 182–195.Google Scholar
  7. Chang, S.S. and Trench, R.K. (1982) Peridinin-Chlorophyll a proteins from the symbiotic dinoflagellate Symbiodinium (=Gymnodinium) microadriaticum Freudenthal. Proc. R. Soc. Lond. B 215: 191–210.CrossRefGoogle Scholar
  8. Correia, M.J. and Lee, J.J. (2000) Chloroplast retention by Elphidium excavatum (Terquem). Is it a selective process? Symbiosis 29: 343–355.Google Scholar
  9. Correia, M.J. and Lee, J.J. (2002a) Fine structure of the plastids retained by the foraminifer Elphidium excavatum (Terquem). Symbiosis 32: 15–26.Google Scholar
  10. Correia, M.J. and Lee, J.J. (2002b) How long do the plastids retained by Elphidium excavatum (Terquem) last in their host? Symbiosis 32: 27–38.Google Scholar
  11. Doyle, W.L. and Doyle, M.M. (1940) The structure of zooxanthellae. Papers from Tortugas Laboratory 32: 129–142.Google Scholar
  12. Faber, W.W. and Lee, J.J. (1991) Histochemical evidence for digestion in Heterostegina depressa and Operculina ammonoides (Foraminifera). Endocytobiol. Cell Res. 8: 53–59.Google Scholar
  13. Faber, W.W., Anderson, O.R., Lindsey, J.L., and Carron, D.A. (1988) Algal-foraminiferal symbiosis in the planktonic foraminifer Globigerinella aequilateralis: I. Occurence and stability of two mutually exclusive chrysophyte endosymbionts and their ultrastructure. J. Foramin. Res. 18: 334–343.CrossRefGoogle Scholar
  14. Faber, W.W., Anderson, O.R., and Carron, D.A. (1989) Algal foraminiferal symbiosis in the planktonic foraminifer Globigerinella aequilateralis: II. Effects of two symbiont species on foraminiferal growth and longevity. J. Foramin. Res. 19: 185–193.CrossRefGoogle Scholar
  15. Garcia-Cuetos, L., Pochon, X., and Pawlowski, J. (2005) Molecular evidence for host–symbiont specificity in soritid foraminifera. Protistology 156: 399–412.CrossRefGoogle Scholar
  16. Gastrich, M.D. (1988) Ultrastructure of a new intracellular symbiotic alga found within planktonic foraminifera. J. Phycol. 23: 623–632.CrossRefGoogle Scholar
  17. Hallock, P. (1985) Why are larger foraminifera large? Paleobiology 11: 195–208.Google Scholar
  18. Hallock, P., Forward, L.B., and Hansen, H.J. (1986) Environmental influence of test shape in Amphistegina. J. Foramin. Res. 16: 224–231.CrossRefGoogle Scholar
  19. Hawkins, E.K. and Lee, J.J. (1990) Fine structure of the cell surface of a cultured endosymbiotic strain of Porphyridium sp. (Rhodophyta). Trans. Am. Microsc. Soc. 109: 352–360.CrossRefGoogle Scholar
  20. Hawkins, E.K. and Lee, J.J. (2001) Architecture of the Golgi apparatus of a scale forming alga: ­Biogenesis and transport of scales. Protoplasma 216: 387–395.CrossRefGoogle Scholar
  21. Hawkins, E.K., Lee, J.J. and Correia, M. (2003) Polar localization of filamentous actin in cells of the scale-forming alga Pleurochrysis sp. Protoplasma 220: 233–236.PubMedCrossRefGoogle Scholar
  22. Hofker, J. (1927) The foraminifera of the Siboga Expedition; Part 1. Monographs Siboga Expedition 1899–1900 (Leiden) 4: 1–78.Google Scholar
  23. Hottinger, L. (1978) Comparative anatomy of elementary shell structure in selected larger foraminifera, In: R. Hedley and C.G. Adams (eds.) Foraminifera Vol. 3. Academic, London, pp. 203–206.Google Scholar
  24. Hottinger, L. (1984) Foraminiféres de grande taile: Signification des structures complexes de la coquille. Benthos 83 : 2nd International Symposium on Benthic Foraminifera, Pau 1983. pp. 309–315. Pau et Bordeaux.Google Scholar
  25. Hottinger, L. (2000) Functional morphology of benthic foraminiferal shells, envelopes of cells beyond measure, In: J.J. Lee, and P.H Muller (eds.) Advances in the Biology of Foraminifera. Micropaleontology 46 (Suppl 1): 57–86.Google Scholar
  26. Hottinger, L. and Dreher, D. (1974) Differentiation of protoplasm in Nummulitidae (Foraminifera) from Elat, Red Sea. Mar. Biol. 25: 41–61.CrossRefGoogle Scholar
  27. Hottinger, L. and Leutenegger, S. (1980) The structure of calcarinid foraminifera. Schweizerische Palaontolgische Abhandlungen 101: 115–150.Google Scholar
  28. Hyams-Kaphzan O. and Lee, J.J. (2009) Cytological examination and location of symbionts in “living sands” – B aculogypsina. J. Foramin. Res. 38: 298–304.CrossRefGoogle Scholar
  29. Hyman, L. (1940) The Invertebrates: Protozoa through Ctenophora. McGraw-Hill, New York/London, pp. 44–45.Google Scholar
  30. Iglesias-Prieto, R., Matta, J.L., Robins, W.A. and Trench, R.K. (1992) Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proc. Natl. Acad. Sci. USA 89: 10302–10305.CrossRefGoogle Scholar
  31. Knight, R. and Mantoura, R.C.F. (1985) Chloroplast and Carotenoid pigments in foraminifera and their symbiotic algae: analysis by high performance liquid chromatography. Mar. Ecol. Prog. Ser. 23: 241–249.CrossRefGoogle Scholar
  32. Kremer, B.P., Schmaljohann, R. and Röttger, R. (1980) Features and nutritional significance of ­photosynthates produced by unicellular algae symbiotic with larger foraminifera. Mar. Ecol. Prog. Ser. 2: 225–228.CrossRefGoogle Scholar
  33. Langer, M.R. and Lipps, J.H. (1995) Phylogenetic incongruence between dinoflagellate endosymbionts (Symbiodinium ) and their host foraminifera (Sorites): small subunit ribosomal RNA gene sequenceevidence. Mar. Micropaleontol. 26: 179–186.CrossRefGoogle Scholar
  34. Lee, J.J., Cevasco, M., Morales, J., Billick, M., G., Fine, M. and Levy, O. A new genus of symbiotic dinoflagellates, Symbiodinoides, from some soritid foraminifera and a new species, Symbiodinoides dubinskyi from the Heron-Wistori Channel, Great Barrier Reef, Australia. J. Eukar. ­Microbiol. (Submitted).Google Scholar
  35. Lee, J.J. (1990) Fine structure of the rhodophycean Porhyridium purpureum in situ in Peneroplis ­pertusus (Forskål) and P. acicularis (Batsch) and in axenic culture. J. Foramin. Res. 20: 162–169.CrossRefGoogle Scholar
  36. Lee, J.J. (2006) Symbiotic forms of life, In: J. Seckbach (ed.) Life As We Know It. Springer, Dordrecht, The Netherlands, pp. 307–324.Google Scholar
  37. Lee, J.J. and Bock, W.D. (1976) The importance of feeding in two species of sorited foraminifera with algal symbionts. Bull. Mar. Sci. 26: 530–537.Google Scholar
  38. Lee, J.J. and Correia, M. (2005) Endosymbiotic diatoms from previously unsampled habitats. ­Symbiosis 38: 251–260.Google Scholar
  39. Lee, J.J. and Hallock, P. (1987) Algal symbiosis as the driving force in the evolution of larger foraminifera. Ann. N.Y. Acad. Sci. 503: 330–347.CrossRefGoogle Scholar
  40. Lee, J.J. and Hallock, P.H. (eds.) (2000) Advances in the Biology of the Foraminifera . Micropaleontology 46 (Suppl), Micropaleontology Press, New York, pp. 368.Google Scholar
  41. Lee, J.J. and Lee, R.E. (1990) Chloroplast retention in elphids (foraminifera), In: P. Nardon, V. Gianinazzi-Pearson, A.R. Grenier, L. Margulis and D.C. Smith (eds.) Endocytobiology IV. Instite National de la Research Agronomique, INSA, Paris, France. pp. 215–220.Google Scholar
  42. Lee, J.J. and Reyes, D. (2006) Initial studies of dinoflagellate recognition in Soritinae. Symbiosis 42: 89–93.Google Scholar
  43. Lee, J.J. and Zucker, W. (1969) Algal flagellate symbiosis in the foraminifera Archaias angulatus. J. Protozool. 16: 71–81.Google Scholar
  44. Lee, J.J., Crockett, L.J., Hagen, J. and Stone, R. (1974) The taxonomic identity and physiological ecology of Chlamydomonas hedleyi sp. From the foraminifer Archaias angulatus. Br. Phycol. J. 9: 407–422.CrossRefGoogle Scholar
  45. Lee, J.J., McEnery, M.E., Kahn, E., and Schuster, F. (1979) Symbiosis and the evolution of larger foraminifera. Micropaleontology 25: 118–140.CrossRefGoogle Scholar
  46. Lee, M.J., Ellis, R., and Lee, J.J. (1982) A comparative study of photoadaptation in four diatoms isolated as endosymbionts from larger foraminifera. Mar. Biol. 68: 193–197.CrossRefGoogle Scholar
  47. Lee, J.J., McEnery, M.E., Koestler, R.L., Lee, M.J., Reidy, J., and Shilo, M. (1983) Experimental studies of symbiont persistence in Amphistegina lessoni, a diatom-bearing species of larger foraminifera from the Red Sea, In: H.E.A. Schenk, and W. Schwemmler (eds.) Endocytobiology II. Walter de Gruyter & Co., Berlin/New York, pp. 487–514.Google Scholar
  48. Lee, J.J., Saks, N.M., Kapiotou, F., Wilen, S.H., and Shilo, M. (1984) Effects of host cell extracts on cultures of endosymbiotic diatoms from larger foraminifera. Mar. Biol. 82: 113–120.CrossRefGoogle Scholar
  49. Lee, J.J., Erez, J., McEnery, M.E., Lagziel, A., and Xenophontos, X. (1986) Experiments on persistence of endosymbiotic diatoms in the larger foraminifer: Amphistegina lessonii. Symbiosis 1: 211–226.Google Scholar
  50. Lee, J., Lanners, E. and terKuile, B. (1988) The retention of chloroplasts by the foraminifer Elphidium crispum. Symbiosis 5: 45–60.Google Scholar
  51. Lee, J.J., Faber W.W., and Lee, R.E. (1991) Granular reticulopodal digestion – A possible preadaption to benthic foraminiferal symbiosis? Symbiosis 10: 47–51.Google Scholar
  52. Lee, J.J., Wray, C.G. and Lawrence, C. (1995) Could foraminiferal zooxanthellae be derived from environmental pools contributed to by different coelenterate hosts? Acta Protozool. 34: 75–85.Google Scholar
  53. Lee, J.J., Morales, J., Bacus, S., Diamont, A., Hallock, P., Pawlowski, J., and Thorpe, J. (1997) Progress in characterizing the endosymbiotic dinoflagellates of soritid foraminifera and related studies on some stages of the life cycle of Marginopora vertebralis. J. Foramin. Res. 27: 254–263.CrossRefGoogle Scholar
  54. Lee, J.J., Correia, M., Reimer, C.W., and Morales, J. (2001) A revised description of the Nitzschia frustulum var. symbiotica complex, the most common of the endosymbiotic diatoms in larger foraminifera, In: J.J. Lee and P.H. Muller (eds.) Advances in the Biology of Foraminifera. Micropaleontology 46(Suppl 1): 170–182.Google Scholar
  55. Lee, J.J., Fine, M., Levy, O. and Morales J. (2009) A note on asexual reproduction of a Marginopora sp from a deep collection in the Heron-Wistori Channel, Great Barrier Reef. J. Foramin. Res. 39: 4–7.CrossRefGoogle Scholar
  56. Leutenegger, S. (1977) Symbiosis between larger foraminifera and unicellular algae in the Gulf of Elat. Utrecht Micropaleontol. Bull. 1: 241–244.Google Scholar
  57. Leutenegger, S. (1984) Symbiosis in benthic foraminifera: specificity and host adaptation. J. Foramin. Res. 14: 16–35.CrossRefGoogle Scholar
  58. Leutenegger, S. and Hansen, H. (1979) Ultrastructural and radiotracer studies of pore-function in foraminifera. Mar. Biol. 5: 11–16.CrossRefGoogle Scholar
  59. Lipps, J.H. and Severin, K.P. (1986) Alveolina quoyi a living fusiform foraminifer at Motupore Island, Papua, New Guinea. Sci. New Guinea 11: 126–137.Google Scholar
  60. Lopez, R. (1979) Algal chloroplastsin the protoplasm of three species of benthic foraminifera: Taxonomic affinity, viability and persistence. Mar. Biol. 53: 201–211.CrossRefGoogle Scholar
  61. Müller-Merz, E. and Lee, J.J. (1976) Symbiosis in the larger foraminiferan Sorites marginales (with notes on Archaias spp). J. Protozool. 23: 390–396.Google Scholar
  62. Muscatine, L. (1967) Glycerol excretion by symbiotic algae from corals and Tridacna, and its control by the host. Science 156: 516–519.Google Scholar
  63. Newell, N.D. (1949) Phyletic size increase, an important trend illustrated by fossil invertebrates. Evolution 3: 103–124.PubMedCrossRefGoogle Scholar
  64. Pawlowski, J., Holzman, M., Fahrni, J., Pochon, X., and Lee, J.J. (2001) Molecular identification of algal endosymbionts in large miliolid foraminifers: 2. Dinoflagellates. J. Eukar. Microbiol. 48: 368–373.PubMedCrossRefGoogle Scholar
  65. Pochon, X., Pawlowski, J., Zaninetti, L., and Rowan, R. (2001) High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar. Biol. 139: 1069–1078.CrossRefGoogle Scholar
  66. Pochon, X., LaJeunesse, T.C. and Pawlowski, J. (2004) Biogeographic partitioning and host specialization among foraminiferan dinoflagellate symbionts (Symbiodinium; Dinophyta). Mar. Biol. 146: 17–27.CrossRefGoogle Scholar
  67. Pochon, X., Montoya-Burgos, J., Stadelman, B. and Pawlowski, J. (2006) Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol. Phylogenet. Evol. 38: 20–30.CrossRefGoogle Scholar
  68. Reichel, M. (1936) Etude sur les Alvéolines. Mémoires Suisses Paleontologie 57: 1–93.Google Scholar
  69. Reichel, M. (1937) Etude sur les Alvéolines. Mémoires Suisses Paleontologie 59: 95–147.Google Scholar
  70. Röttger, R. (1972) Die Kultur von Heterostigina depressa (Foraminifera, Numulitidae). Mar. Bio. 15: 150–159.Google Scholar
  71. Schoenberg, D.A. and Trench, R.K. (1980a) Genetic variation in Symbiodinium (Gymnodinium) microadriaticum Freudenthal and specificityin its symbiosis with marine invertebrates. I Isoenzyme and soluble protein patterns of axenic culturesof S. microadriaticum. Proc. R. Soc. Lond. B 207: 405–427.CrossRefGoogle Scholar
  72. Schoenberg, D.A. and Trench, R.K. (1980b) Genetic variation in Symbiodinium (Gymnodinium) microadriaticum Freudenthal and specificityin its symbiosis with marine invertebrates. II Morphological variation in S. microadriaticum. Proc. R. Soc. Lond. B 207: 429–444.CrossRefGoogle Scholar
  73. Schoenberg, D.A. and Trench, R.K. (1980c) Genetic variation in Symbiodinium (Gymnodinium) microadriaticum Freudenthal and specificityin its symbiosis with marine invertebrates. III Specificity and infectivity of S. microadriaticum. Proc. R. Soc. Lond. B 207: 445–460.CrossRefGoogle Scholar
  74. Spiro, H.J. (1987) Symbiosis in the planktonic foraminifer Orbulina universa and the isolation of its symbiotic dinoflagellate, Gymnodinium beii sp. nov. J. Phycol. 21: 307–317.CrossRefGoogle Scholar
  75. Sutton, D.C. and Hoegh-Guldberg, O. (1990) Host–zooxanthella interactions in four temperate marine invertebrate symbioses: assessment of host extract on symbionts. Biol. Bull. 178: 175–186.CrossRefGoogle Scholar
  76. ter Kuile, B.H., Erez, J. and Lee, J.J. (1987) The role of feeding in the metabolism of larger symbiont bearing foraminifera. Symbiosis 4: 335–350.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of BiologyCity College of City University of New YorkNew YorkUSA

Personalised recommendations