Grazing Livestock, Our Connection to Grass: A Mediterranean Insight

  • Serge Yan Landau
  • Giovanni Molle
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 16)


The presence of Man in Mediterranean harsh environments, where the conversion of sun energy to grass – including herbaceous and ligneous vegetation – is the only asset, would not be possible without domestic livestock. Grazing livestock have developed foraging behaviors – largely affected by their interaction with humans throughout history – that allow them minimizing the intake of toxic plant secondary meta­bolites (PSMs) and mitigating their negative effects. They have evolved to cope with extreme nutritional situations and to fit their reproductive cycles to seasonal cycles of nutrient availability. They can probably learn how to minimize the negative effects of parasites by ingesting plants containing PSMs with pharmaceutical properties where available. Most of this knowledge is taught mainly by mothers, but peer influence and individual learning by trial-and-error are also instrumental in surviving in an ever-changing world. Grazing livestock possess foraging cultures transmitted from generation to generation. With an emphasis on Mediterranean conditions, we review the scientific basis of foraging cultures, and how they may impact on our own body. In particular, we address the flow and modifications of fatty acids from grass to man, through the composition of milk or meat, which we consume, with emphasis on the roles of PSMs on the sensory properties and the health value of grazing livestock products. Interestingly, new technologies, such as stable element isotope analysis, are successful in identifying regional fingerprints in meat, probably related to foraging cultures that bridge between local human cultures and their environment.


Conjugate Linoleic Acid Condensed Tannin Small Ruminant Grazing Livestock Phenological Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Addis, M., Cabiddu, A., Pinna, G., Decandia, M., Piredda, G., Pirisi, A. and Molle, G. (2005) Milk and cheese fatty acid composition of sheep fed different Mediterranean forages with particular reference to CLA cis9-trans11. J. Dairy Sci. 88: 3443–3454.PubMedCrossRefGoogle Scholar
  2. Addis, M., Pinna, G., Molle, G., Fiori, M., Spada, S., Decandia, M., Scintu, M.F., Piredda, G. and Pirisi, A. (2006) The inclusion of a dairy plant (Chrysanthemum coronarium) in dairy sheep diet: 2 Effect on the volatile fraction of milk and cheese. Livest. Sci. 101: 68–80.CrossRefGoogle Scholar
  3. Alexandre, G., Aumont, G., Fleury, J., Coppry, O., Mulciba, P. and Nepos, A. (1997) Production semi intensive au pâturage de caprins à viande en zone tropicale humide: le cas des cabris Créoles sur pangola (Digitaria decumbens) en Guadeloupe. INRA, Prod. Anim. 10: 43–54.Google Scholar
  4. Aurousseau, B., Bauchart, D., Calichon, E., Micol, D. and Priolo, A. (2004) Effect of grass or concentrate feeding systems and rate of growth on triglyceride and phospholipid and their fatty acids in the M. longissimus thoracis of lambs. Meat Sci. 66: 531–541.PubMedCrossRefGoogle Scholar
  5. Baer, R.J., Ryali, J. and Schingoete, D.J. (2001) Composition and properties of milk and butter from cows fed fish oil. J. Dairy Sci. 84: 345–353.PubMedCrossRefGoogle Scholar
  6. Banni, S., and Martin, J.C. (1998) Conjugated linoleic acid and metabolites, In: J.L. Sebedio (ed.) Trans Fatty Acids in Human Nutrition. The Oily Press, Dundee, UK, pp. 261–302.Google Scholar
  7. Barry, T.N. and McNabb, W.C. (1999) The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br. J. Nutr. 81: 263–272.PubMedGoogle Scholar
  8. Bauman, D.E. and Grinari, J.M. (2000) Regulation and nutritional manipulation of milk fat: low-fat milk syndrome. Livest. Prod. Sci. 70: 15–29.CrossRefGoogle Scholar
  9. Biquand, S. and Biquand-Guyot, V. (1992) The influence of peers, lineage and environment on food selection of the criollo goat. Appl. Anim. Behav. Sci. 43: 231–245.CrossRefGoogle Scholar
  10. Bocquier, F. and Caja, G. (2001) Production et composition du lait de brebis: effets de l’alimentation. INRA Prod. Anim. 14: 129–140.Google Scholar
  11. Brosh, A. Henkin, Z., Orlov, A. and Aharoni, Y. (2006) Diet composition and energy balance of cows grazing on Mediterranean woodland. Livest. Sci. 102: 11–22.CrossRefGoogle Scholar
  12. Cabiddu, A., Decandia, M., Addis, M., Piredda, G., Pirisi, A. and Molle, G. (2005) Managing Mediterranean pastures to enhance the level of beneficial fatty acids in sheep milk. Small Rumin. Res. 5: 169–180.CrossRefGoogle Scholar
  13. Cabiddu, A., Molle, G., Decandia, M., Spada, S., Fiori, M., Piredda, G., and Addis, M. (2009) Responses to condensed tannins of flowering sulla (Hedysarum coronarium L.) grazed by dairy sheep. Part 2: effects on milk fatty acid profile. Livest. Sci., 123: 230–240.Google Scholar
  14. Camin, F., Bontempo, L., Heinrich, K., Horacek, M., Kelly, S.D., Schlicht, C., Thomas, F., Monahan, F.J., Hoogewerff, J. and Rossmann, A. (2007) Multi-element (H, C, N, S) stable isotope characteristics of lamb meat from different European regions. Anal. Bio-Anal. Chem. 389: 309–320.CrossRefGoogle Scholar
  15. Campbell, E.S., Taylor, C.A., Walker, J.W., Lupton, C. J., Waldron, D.F. and Landau, S.Y. (2007) Effects of supplementation on juniper intake by goats. Rangel. Ecol. Manage. 60: 588–595.CrossRefGoogle Scholar
  16. Chilliard, Y., Ferlay, A, Rouel, J. and Lamberet, G. (2003) A review of nutritional and physiological factors affecting goat milk synthesis and lipolysis. J. Dairy Sci. 86: 1751–1770.PubMedCrossRefGoogle Scholar
  17. Colucci, P.E., MacLeod, J.K., Grovum, W.L., Cahill, L.W. and McMillan, I. (1989) Comparative digestion in sheep and cattle fed different forage to concentrate ratios at high and low intakes. J. Dairy Sci. 72: 1774–1785.PubMedCrossRefGoogle Scholar
  18. Decandia, M., Sitzia, M., Cabiddu, A., Kababya, D. and Molle, G. (2000) The use of polyethylene-glycol to reduce the anti-nutritional effects of tannins in goats fed woody species. Small Rumin. Res. 38: 157–164.CrossRefGoogle Scholar
  19. Demment, M.W. and Greenwood, G.B. (1988) Forage ingestion: effects of forage characteristics and body size. J. Anim. Sci. 66: 2380–2392.PubMedGoogle Scholar
  20. Dewhurst, R.J., Scollan, N.D., Lee, M.R.F., Ougham, H.J. and Humphreys, M.O. (2003) Forage breeding and management to increase the beneficial fatty acid content of ruminant products, Proc. Nutr. Soc. 62: 329–336.PubMedCrossRefGoogle Scholar
  21. Epstein, H. (ed.) (1985) The Awassi Sheep with Special Reference to the Improved Dairy Type. Food and Agriculture Organization of the United Nations (FAO Animal Production and Health Paper no. 57), Rome, Italy.Google Scholar
  22. Evershed, R. P., Payne, S., Sherratt, A.G., Copley, M.S., Coolidge, J., Urem-Kotsu, D., Kotsakis, K., Özdoğan, M., Aslý, E. Ö., Nieuwenhuyse, O., Akkermans, P. M. M. G., Bailey, D., Andeescu, R., Campbell, S., Farid, S., Hodder, I., Yalman, N., Özbaşaran, M., Biçakc, E., Garfinkel, Y., Levy, T. and Burton, M.M. (2008) Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature 455: 528–531.CrossRefGoogle Scholar
  23. Fernandez, C., Astier, C., Rock, E., Coulon, J.B. and Berdague, J.L. (2003) Characterization of milk by analysis of its terpene fractions. Intl. J. Food Sci. Technol. 38: 445–451.CrossRefGoogle Scholar
  24. Garcia-Gonzalez, R. and Cuartas, P. (1989) A comparison of the diets of the wild goat (Capra pyrenaica), domestic goat (Capra hircus), mouflon (Ovis musimon) and domestic sheep (Ovis aries) in the Cazorla mountain range. Acta Biol. Mont. 9: 123–132.Google Scholar
  25. Gerson, T., John, A. and King, A.S.D. (1986) Effects of feeding ryegrass of varying maturity on the metabolism and composition of lipids in the rumen. J. Agric. Sci. (Cambridge) 106: 97–101.CrossRefGoogle Scholar
  26. Glasser, T.A., Ungar, E.D., Landau, S.Y., Perevolotsky, A., Muklada, H. and Walker, J.W. (2009) Breed and maternal effects on the intake of tannin-rich browse by juvenile domestic goats (Capra hircus). Appl. Anim. Behav. Sci. 119: 71–77.CrossRefGoogle Scholar
  27. Hanson, J. and Reicosky, D. (2008) History of plowing over ten thousand years. USDA/ARS. Accessed 24 Nov. 2008.
  28. Henkin, Z. (2000) Reduction of goat grazing as a factor in the encroachment of Calicotome villosa bushes in the natural brushland of the Galilee (in Hebrew). Ecol. Environ. 6: 104–108.Google Scholar
  29. Hutchings, M.R., Gordon, I.J., Kiryazakis, I. and Jackson, F. (2001) Sheep avoidance of faeces-­contaminated patches leads to a trade-off between intake rate of forage and parasitism in subsequent foraging decisions. Anim. Behav. 62: 955–964.CrossRefGoogle Scholar
  30. Jackson, F. and Miller, J. (2006) Alternative approaches to control – Quo vadit? Vet. Parasitol. 139: 371–384.Google Scholar
  31. Jáuregui, B. M., Celaya, R., García, U. and Osoro, K. (2007) Vegetation dynamics in burnt heather-gorse shrublands under different grazing management with sheep and goats. Agroforest. Syst. 70: 103–111.CrossRefGoogle Scholar
  32. Kababya, D., Perevolotsky, A., Bruckental, I. and Landau S. (1998) Selection of diets by dual-purpose Mamber goats in Mediterranean woodland. J. Agric. Sci. (Camb.) 131: 221–228.CrossRefGoogle Scholar
  33. Kayser, O., Kiderlen, A.F. and Croft, S.L. (2003) Natural products as antiparasitic drugs. Parasitol. Res. 90: S55–S62.PubMedCrossRefGoogle Scholar
  34. Landau, Y. (ed.) (1776) HaNoda B’yehuda. Sefer Sha’alos uteshuvos (in Hebrew), Prague. Modern Reprint, 441 p., JNUL/ULI ID: NNL-001188043,, NYGoogle Scholar
  35. Landau, S. and Molle, G. (2005) Improving milk yield and quality through feeding, In: A. Prisi (ed.) Future of the Sheep and Goats Dairy Sector. Special Issue of the International Dairy Federation. Pub. IDF, Brussels, Part 3, pp. 143–152.Google Scholar
  36. Landau, S.Y., Ben-Moshe, E., Egber, A., Shlosberg, A., Bellaiche, M. and Perevolotsky, A. (1999) Conditioned aversion to minimize Ferula communis intake by orphaned lambs. J. Range Manage. 52: 429–432.CrossRefGoogle Scholar
  37. Landau, S., Silanikove, N., Nitsan, Z., Barkai, D., Baram, H., Provenza, F.D. and Perevolotsky, A. (2000) Short-term changes in eating patterns explain the effects of condensed tannins in heifers. Appl. Anim. Behav. Sci. 69: 199–213.CrossRefGoogle Scholar
  38. Landau, S.Y., Perevolotsky, A., Kababya, D., Silanikove, N., Nitzan, R., Baram, H. and Provenza, F.D. (2002) Polyethylene-glycol increases the intake of tannin-rich Mediterranean browse by ranging goats. J. Range Manage. 55: 598–603.CrossRefGoogle Scholar
  39. Lee, M.R.F., Parfitt, L.J., Scollan, N.D. and Minchin, F.R. (2007) Lipolysis in red clover with different polyphenol oxidase activities in the presence and absence of rumen fluid. J. Sci. Food Agric. 87: 1308–1314.CrossRefGoogle Scholar
  40. Lev-Yadun, S., Gopher, A. and Abbo, S. (2000) The cradle of agriculture. Science 288: 1602–1603.CrossRefGoogle Scholar
  41. Lyman, T. D., Provenza, F.D. and Villalba, J.J. (2008) Sheep foraging behavior in response to ­interactions among alkaloids, tannins and saponins. J. Sci. Food Agric. 88: 824–831.CrossRefGoogle Scholar
  42. Meuret, M. (1997) Food harvesting by small ruminants foraging on rangeland and woodland undergrowth. INRA Prod. Anim. 10: 391–401.Google Scholar
  43. Min, B.R. and Hart, S.P. (2003) Tannins for suppression of internal parasites. J. Anim. Sci. 81: E102–E109.Google Scholar
  44. Molan, A.L., Meagher, L.P., Spencer, P.A. and Sivakumaran, S. (2003) Effects of flavan-3-ols on in vitro egg hatching, larval development and viabilityt of infective larvae of Trichostrongylus colubriformis. Intl. J. Parasitol. 33: 1691–1698.CrossRefGoogle Scholar
  45. Morand-Fehr, P., Fedele, V., Decandia, M. and Lefrileux Y. (2007) Influence of farming and feeding systems on composition and quality of goats and sheep milk. Small Rumin. Res. 68: 20–34.CrossRefGoogle Scholar
  46. Mote, T.E., Villalba, J.J. and Provenza, F.D. (2008) Sequence of food presentation influences intake of foods containing tannins and terpenes. Appl. Anim. Behav. Sci. 113: 57–68.CrossRefGoogle Scholar
  47. Nudda, A., Palmquist, D.L., Bataccone, G., Fancellu, S., Rassu, S.P.G. and Pulina, G. (2008) Relationships between the contents of vaccenic acid, CLA and n-3 fatty acids of goat milk and the muscle of their suckling kids. Livest. Sci. 118: 195–203.CrossRefGoogle Scholar
  48. Perevolotsky, A. Landau, S., Kababia, D. and Ungar, E.D. (1998) Diet selection in dairy goats grazing woody Mediterranean rangeland. Appl. Anim. Behav. Sci. 57: 117–131.CrossRefGoogle Scholar
  49. Petron, M.J., Raes, K., Caléis, E., Lourenco, M., Fremaut, D. and De Smet, S. (2007) Effect of grazing pastures of different botanical composition on antioxidant enzyme activities and oxidative stability of lamb meat. Meat Sci. 75: 737–745.PubMedCrossRefGoogle Scholar
  50. Price, E.O. (ed.) (2002) Animal Domestication and Behavior. CABI, Wallington.Google Scholar
  51. Priolo, A., Micol, D., Agabriel, J., Prache, S. and Dransfield, E. (2002) Effect of grass or concentrate feeding systems on lamb carcass and meat quality. Meat Sci. 62: 179–185.PubMedCrossRefGoogle Scholar
  52. Priolo, A., Vasta, V., Fasone, V., Lanza, C.M., Scerra, M., Biondi, L., Bella, M. and Whittington, F.M. (2008) Meat odour and flavour and indoles concentration in ruminal fluid and adipose tissue of lambs fed green herbage or concentrates with or without tannins. Animal, doi: 10.1017/S1751731108003662, Published online by Cambridge University Press 02 Dec 2008.Google Scholar
  53. Provenza, F.D. (1995) Postingestive feedback as an elementary determinant of food preference and intake in ruminants. J. Range Manage. 48: 2–17.CrossRefGoogle Scholar
  54. Provenza, F.D. (ed.) (2003) Foraging Behavior: Managing to Survive in a World of Change. Behavioral Principles for Human, Animal, Vegetation, and Ecosystem Management. NRCS/Utah State University. Logan, UT.Google Scholar
  55. Provenza, F.D., Ortega-Reyes, C.B., Scott, C.B., Lynch, J.J. and Burritt, E.A. (1994) Antiemetic drugs attenuate food aversions in sheep. J. Anim. Sci. 72: 1989–1994.PubMedGoogle Scholar
  56. Pulina, G., Nudda, A., Battacone, G. and Cannas, A. (2006) Effects of nutrition on the contents of fat, protein, somatic cells, aromatic compounds, and undesirable substances in sheep milk. Anim. Feed Sci. Technol. 131: 255–291.CrossRefGoogle Scholar
  57. Rogosic, J., Pfister, J.A., Provenza, F.D. and Grbesa, D. (2006) Sheep and goat preference for and nutritional value of Mediterranean maquis shrubs. Small Rumin. Res. 64: 169–179.CrossRefGoogle Scholar
  58. Ryan, S.M., Unruh, J.A., Corrigan, M.E., Drouilard, J.S. and Seyfert, M. (2007) Effects of concentrate level on carcass traits of Boer crossbred goats. Small Rumin. Res. 73: 67–76.CrossRefGoogle Scholar
  59. Sanudo, C., Alfonso, M., San Julian, R., Thorkellson, G., Valdimarsdottir, T., Zygoyiannis, D., Stamataris, C., Piasentier, E., Mills, C., Perge, P., Dransfield, E., Nute, G.R., Enser, M. and Fisher, A.V. (2007) Regional variation in the hedonic evaluation of lamb meat from diverse production systems by consumers in six European countries. Meat Sci. 75: 610–621.PubMedCrossRefGoogle Scholar
  60. Scerra, M., Caparra, P., Foti, F., Galofaro, V., Sinatra, M.C. and Scerra, V. (2007) Influence of ewe feeding systems on fatty acid composition of suckling lambs. Meat Sci. 76: 390–394.PubMedCrossRefGoogle Scholar
  61. Sherratt, A. (1983) The secondary exploitation of animals in the Old World. World Archaeol. 15: 90–104.CrossRefGoogle Scholar
  62. Shmida, A. and Ellner, S. (1983) Seed dispersal on pastoral grazers in open Mediterranean chaparral in Israel. Isr. J. Bot. 32: 147–159.Google Scholar
  63. Shrader, A.M., Kerley, G.I.H., Kotler, B.P. and Brown, J.S. (2007) Social information, social feeding, and competition in group-living goats (Capra hircus). Behav. Ecol. 18: 103–107.CrossRefGoogle Scholar
  64. Silanikove, N., Gilboa, N. and Nitsan, Z. (1997) Interactions among tannins, supplementation and polyethylene glycol in goats given oak leaves: effects on digestion and feed intake. Anim. Sci. 64: 479–483.CrossRefGoogle Scholar
  65. USDA (2007) Daily National Grain Market Summary (USDA, 2007) Accessed 14 Jan. 2008.
  66. Van Soest, P.J. (ed.) (1982) Nutritional Ecology of the Ruminant. O&B Books, Orvallis, OR.Google Scholar
  67. Villalba, J.J. and Provenza, F.D. (2007) Self-medication and homeostatic behaviour in herbivores: learning about the benefits of nature’s pharmacy. Animal 1: 1360–1370.PubMedCrossRefGoogle Scholar
  68. Villalba, J.J., Provenza, F.D. and Shaw, R. (2006) Sheep self-medicate when challenged with illness-inducing foods. Anim. Behav. 71: 1131–1139.CrossRefGoogle Scholar
  69. Waller, P.J. (2006) Sustainable nematode parasite control strategies for ruminant livestock by grazing management and biological control. Anim. Feed Sci. Technol. 126: 277–289.CrossRefGoogle Scholar
  70. Westoby, M. (1978) What are the biological bases of varied diets? Am. Nat. 112: 627–631.CrossRefGoogle Scholar
  71. Wiedemeier, R.D., Provenza, F.D. and Burritt, E.A. (2002) Performance of mature beef cows wintered on low-quality forages is affected by short-term exposure to the forages as suckling heifer calves. J. Anim. Sci. 80: 2340–2348.Google Scholar
  72. Zeder, M. A. and Hesse, B. (2000) The initial domestication of goats (Capra hircus) in the Zagros mountains 10,000 years ago. Science 287: 2254–2257.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Natural Resources and AgronomyInstitute of Plant Sciences, The Volcani Center, Agricultural Research OrganizationBet DaganIsrael
  2. 2.AGRIS SardegnaDipartimento per la Ricerca nelle Produzioni AnimaliOlmedoItaly

Personalised recommendations