Skip to main content

Roles for Actin Dynamics in Cell Movements During Development

  • Chapter
  • First Online:
Actin-based Motility

Abstract

Actin-dependent cellular movements and rearrangements are crucial for development. Studies in vitro have contributed much to the knowledge of actin biology. However, interesting environmental influences common in developing systems can differentially regulate actin dynamics and organization. In this chapter, we highlight several selected examples of directed cell migration during morphogenesis, in which actin dynamics have been observed directly in live-imaging studies. We discuss similarities and differences between collective cell and single cell migration during development, and we compare what has been learned from in vivo studies in developmental systems with in vitro studies of single cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abercrombie M, Heaysman JE. 1954. Observations on the social behaviour of cells in tissue culture. II. monolayering of fibroblasts. Exp Cell Res 6:293–306.

    Article  PubMed  CAS  Google Scholar 

  • Abercrombie M, Heaysman JE, Karthauser HM. 1957. Social behaviour of cells in tissue culture. III. mutual influence of sarcoma cells and fibroblasts. Exp Cell Res 13:276–291.

    Article  PubMed  CAS  Google Scholar 

  • Adler CE, Fetter RD, Bargmann CI. 2006. UNC-6/netrin induces neuronal asymmetry and defines the site of axon formation. Nat Neurosci 9:511–518.

    Article  PubMed  CAS  Google Scholar 

  • Aquino JB, Lallemend F, Marmigere F, Adameyko II, Golemis EA, Ernfors P. 2009. The retinoic acid inducible Cas-family signaling protein Nedd9 regulates neural crest cell migration by modulating adhesion and actin dynamics. Neuroscience 162:1106–1119.

    Article  PubMed  CAS  Google Scholar 

  • Berndt JD, Clay MR, Langenberg T, Halloran MC. 2008. Rho-kinase and myosin II affect dynamic neural crest cell behaviors during epithelial to mesenchymal transition in vivo. Dev Biol 324:236–244.

    Article  PubMed  CAS  Google Scholar 

  • Blaser H, Eisenbeiss S, Neumann M, Reichman-Fried M, Thisse B, Thisse C, Raz E. 2005. Transition from non-motile behaviour to directed migration during early PGC development in zebrafish. J Cell Sci 118:4027–4038.

    Article  PubMed  CAS  Google Scholar 

  • Bloor JW, Kiehart DP. 2002. Drosophila RhoA regulates the cytoskeleton and cell-cell adhesion in the developing epidermis. Development 129:3173–3183.

    PubMed  CAS  Google Scholar 

  • Burstyn-Cohen T, Stanleigh J, Sela-Donenfeld D, Kalcheim C. 2004. Canonical Wnt activity regulates trunk neural crest delamination linking BMP/noggin signaling with G1/S transition. Development 131:5327–5339.

    Article  PubMed  CAS  Google Scholar 

  • Carmona-Fontaine C, Matthews HK, Kuriyama S, Moreno M, Dunn GA, Parsons M, Stern CD, Mayor R. 2008. Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 456:957–961.

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Adler CE, Krause M, Clark SG, Gertler FB, Tessier-Lavigne M, Bargmann CI. 2006. MIG-10/lamellipodin and AGE-1/PI3K promote axon guidance and outgrowth in response to slit and netrin. Curr Biol 16:854–862.

    Article  PubMed  CAS  Google Scholar 

  • Chisholm AD, Hardin J. 2005. Epidermal morphogenesis. WormBook:1–22.

    Google Scholar 

  • Ciruna B, Weidinger G, Knaut H, Thisse B, Thisse C, Raz E, Schier AF. 2002. Production of maternal-zygotic mutant zebrafish by germ-line replacement. Proc Natl Acad Sci USA 99:14919–14924.

    Article  PubMed  CAS  Google Scholar 

  • Clark AG, Miller AL, Vaughan E, Yu HY, Penkert R, Bement WM. 2009. Integration of single and multicellular wound responses. Curr Biol 19:1389–1395.

    Article  PubMed  CAS  Google Scholar 

  • Condeelis J, Segall JE. 2003. Intravital imaging of cell movement in tumours. Nat Rev Cancer 3:921–930.

    Article  PubMed  CAS  Google Scholar 

  • De Calisto J, Araya C, Marchant L, Riaz CF, Mayor R. 2005. Essential role of non-canonical Wnt signalling in neural crest migration. Development 132:2587–2597.

    Article  PubMed  Google Scholar 

  • Doitsidou M, Reichman-Fried M, Stebler J, Koprunner M, Dorries J, Meyer D, Esguerra CV, Leung T, Raz E. 2002. Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 111:647–659.

    Article  PubMed  CAS  Google Scholar 

  • Drees F, Gertler FB. 2008. Ena/VASP: proteins at the tip of the nervous system. Curr Opin Neurobiol 18:53–59.

    Article  PubMed  CAS  Google Scholar 

  • Dumstrei K, Mennecke R, Raz E. 2004. Signaling pathways controlling primordial germ cell migration in zebrafish. J Cell Sci 117:4787–4795.

    Article  PubMed  CAS  Google Scholar 

  • Edwards KA, Demsky M, Montague RA, Weymouth N, Kiehart DP. 1997. GFP-moesin illuminates actin cytoskeleton dynamics in living tissue and demonstrates cell shape changes during morphogenesis in Drosophila. Dev Biol 191:103–117.

    Article  PubMed  CAS  Google Scholar 

  • Franke JD, Montague RA, Kiehart DP. 2005. Nonmuscle myosin II generates forces that transmit tension and drive contraction in multiple tissues during dorsal closure. Curr Biol 15:2208–2221.

    Article  PubMed  CAS  Google Scholar 

  • Friedl P. 2004. Dynamic imaging of cellular interactions with extracellular matrix. Histochem Cell Biol 122:183–190.

    Article  PubMed  CAS  Google Scholar 

  • Friedl P, Gilmour D. 2009. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10:445–457.

    Article  PubMed  CAS  Google Scholar 

  • Gadea G, de Toledo M, Anguille C, Roux P. 2007. Loss of p53 promotes RhoA-ROCK-dependent cell migration and invasion in 3D matrices. J Cell Biol 178:23–30.

    Article  PubMed  CAS  Google Scholar 

  • Gammill LS, Bronner-Fraser M. 2003. Neural crest specification: migrating into genomics. Nat Rev Neurosci 4:795–805.

    Article  PubMed  CAS  Google Scholar 

  • Gates J, Mahaffey JP, Rogers SL, Emerson M, Rogers EM, Sottile SL, Van Vactor D, Gertler FB, Peifer M. 2007. Enabled plays key roles in embryonic epithelial morphogenesis in Drosophila. Development 134:2027–2039.

    Article  PubMed  CAS  Google Scholar 

  • Gertler FB, Doctor JS, Hoffmann FM. 1990. Genetic suppression of mutations in the Drosophila abl proto-oncogene homolog. Science 248:857–860.

    Article  PubMed  CAS  Google Scholar 

  • Gitai Z, Yu TW, Lundquist EA, Tessier-Lavigne M, Bargmann CI. 2003. The netrin receptor UNC-40/DCC stimulates axon attraction and outgrowth through enabled and, in parallel, Rac and UNC-115/AbLIM. Neuron 37:53–65.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein B, Hamada H. 2009. Shape meets polarity in Japan. Development 136:2487–2492.

    Article  PubMed  CAS  Google Scholar 

  • Groysman M, Shoval I, Kalcheim C. 2008. A negative modulatory role for rho and rho-associated kinase signaling in delamination of neural crest cells. Neural Dev 3:27.

    Article  PubMed  Google Scholar 

  • Gurniak CB, Perlas E, Witke W. 2005. The actin depolymerizing factor n-cofilin is essential for neural tube morphogenesis and neural crest cell migration. Dev Biol 278:231–241.

    Article  PubMed  CAS  Google Scholar 

  • Harden N, Ricos M, Ong YM, Chia W, Lim L. 1999. Participation of small GTPases in dorsal closure of the Drosophila embryo: distinct roles for Rho subfamily proteins in epithelial morphogenesis. J Cell Sci 112 ( Pt 3):273–284.

    PubMed  CAS  Google Scholar 

  • Harris TJ, Sawyer JK, Peifer M. 2009. How the cytoskeleton helps build the embryonic body plan: models of morphogenesis from Drosophila. Curr Top Dev Biol 89:55–85.

    Article  PubMed  CAS  Google Scholar 

  • Hegerfeldt Y, Tusch M, Brocker EB, Friedl P. 2002. Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, beta1-integrin function, and migration strategies. Cancer Res 62:2125–2130.

    PubMed  CAS  Google Scholar 

  • Homem CC, Peifer M. 2008. Diaphanous regulates myosin and adherens junctions to control cell contractility and protrusive behavior during morphogenesis. Development 135:1005–1018.

    Article  PubMed  CAS  Google Scholar 

  • Hutson MS, Tokutake Y, Chang MS, Bloor JW, Venakides S, Kiehart DP, Edwards GS. 2003. Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 300:145–149.

    Article  PubMed  CAS  Google Scholar 

  • Hwang YS, Luo T, Xu Y, Sargent TD. 2009. Myosin-X is required for cranial neural crest cell migration in Xenopus laevis. Dev Dyn 238:2522–2529.

    Article  PubMed  CAS  Google Scholar 

  • Jacinto A, Wood W, Balayo T, Turmaine M, Martinez-Arias A, Martin P. 2000. Dynamic actin-based epithelial adhesion and cell matching during Drosophila dorsal closure. Curr Biol 10:1420–1426.

    Article  PubMed  CAS  Google Scholar 

  • Jacinto A, Woolner S, Martin P. 2002. Dynamic analysis of dorsal closure in Drosophila: from genetics to cell biology. Dev Cell 3:9–19.

    Article  PubMed  CAS  Google Scholar 

  • Kasemeier-Kulesa JC, Kulesa PM, Lefcort F. 2005. Imaging neural crest cell dynamics during formation of dorsal root ganglia and sympathetic ganglia. Development 132:235–245.

    Article  PubMed  CAS  Google Scholar 

  • Kiehart DP, Galbraith CG, Edwards KA, Rickoll WL, Montague RA. 2000. Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J Cell Biol 149:471–490.

    Article  PubMed  CAS  Google Scholar 

  • Kolega J, Shure MS, Chen WT, Young ND. 1982. Rapid cellular translocation is related to close contacts formed between various cultured cells and their substrata. J Cell Sci 54:23–34.

    PubMed  CAS  Google Scholar 

  • Kolsch V, Charest PG, Firtel RA. 2008. The regulation of cell motility and chemotaxis by phospholipid signaling. J Cell Sci 121:551–559.

    Article  PubMed  CAS  Google Scholar 

  • Kuriyama S, Mayor R. 2008. Molecular analysis of neural crest migration. Philos Trans R Soc Lond B Biol Sci 363:1349–1362.

    Article  PubMed  Google Scholar 

  • Lee JY, Goldstein B. 2003. Mechanisms of cell positioning during C. elegans gastrulation. Development 130:307–320.

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Harland RM. 2007. Actomyosin contractility and microtubules drive apical constriction in xenopus bottle cells. Dev Biol 311:40–52.

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Marston DJ, Walston T, Hardin J, Halberstadt A, Goldstein B. 2006. Wnt/Frizzled signaling controls C. elegans gastrulation by activating actomyosin contractility. Curr Biol 16:1986–1997.

    Article  PubMed  CAS  Google Scholar 

  • Liu JP, Jessell TM. 1998. A role for rhoB in the delamination of neural crest cells from the dorsal neural tube. Development 125:5055–5067.

    PubMed  CAS  Google Scholar 

  • Lundquist EA, Herman RK, Shaw JE, Bargmann CI. 1998. UNC-115, a conserved protein with predicted LIM and actin-binding domains, mediates axon guidance in C. elegans. Neuron 21:385–392.

    Article  PubMed  CAS  Google Scholar 

  • Lundquist EA, Reddien PW, Hartwieg E, Horvitz HR, Bargmann CI. 2001. Three C. elegans Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis. Development 128:4475–4488.

    PubMed  CAS  Google Scholar 

  • Martin P, Parkhurst SM. 2004. Parallels between tissue repair and embryo morphogenesis. Development 131:3021–3034.

    Article  PubMed  CAS  Google Scholar 

  • Matthews HK, Marchant L, Carmona-Fontaine C, Kuriyama S, Larrain J, Holt MR, Parsons M, Mayor R. 2008. Directional migration of neural crest cells in vivo is regulated by Syndecan-4/Rac1 and non-canonical Wnt signaling/RhoA. Development 135:1771–1780.

    Article  PubMed  CAS  Google Scholar 

  • Mattila PK, Lappalainen P. 2008. Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9:446–454.

    Article  PubMed  CAS  Google Scholar 

  • Millard TH, Martin P. 2008. Dynamic analysis of filopodial interactions during the zippering phase of drosophila dorsal closure. Development 135:621–626.

    Article  PubMed  CAS  Google Scholar 

  • Nie S, Kee Y, Bronner-Fraser M. 2009. Myosin-X is critical for migratory ability of Xenopus cranial neural crest cells. Dev Biol 335:132–142.

    Article  PubMed  CAS  Google Scholar 

  • Norris AD, Dyer JO, Lundquist EA. 2009. The Arp2/3 complex, UNC-115/abLIM, and UNC-34/Enabled regulate axon guidance and growth cone filopodia formation in Caenorhabditis elegans. Neural Dev 4:38.

    Article  PubMed  Google Scholar 

  • Patel FB, Bernadskaya YY, Chen E, Jobanputra A, Pooladi Z, Freeman KL, Gally C, Mohler WA, Soto MC. 2008. The WAVE/SCAR complex promotes polarized cell movements and actin enrichment in epithelia during C. elegans embryogenesis. Dev Biol 324:297–309.

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD, Borisy GG. 2003. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465.

    Article  PubMed  CAS  Google Scholar 

  • Quinn CC, Pfeil DS, Wadsworth WG. 2008. CED-10/Rac1 mediates axon guidance by regulating the asymmetric distribution of MIG-10/lamellipodin. Curr Biol 18:808–813.

    Article  PubMed  CAS  Google Scholar 

  • Raich WB, Agbunag C, Hardin J. 1999. Rapid epithelial-sheet sealing in the Caenorhabditis elegans embryo requires cadherin-dependent filopodial priming. Curr Biol 9:1139–1146.

    Article  PubMed  CAS  Google Scholar 

  • Raz E. 2004. Guidance of primordial germ cell migration. Curr Opin Cell Biol 16:169–173.

    Article  PubMed  CAS  Google Scholar 

  • Reed BH, Wilk R, Schock F, Lipshitz HD. 2004. Integrin-dependent apposition of Drosophila extraembryonic membranes promotes morphogenesis and prevents anoikis. Curr Biol 14:372–380.

    Article  PubMed  CAS  Google Scholar 

  • Reichman-Fried M, Minina S, Raz E. 2004. Autonomous modes of behavior in primordial germ cell migration. Dev Cell 6:589–596.

    Article  PubMed  CAS  Google Scholar 

  • Rupp PA, Kulesa PM. 2007. A role for RhoA in the two-phase migratory pattern of post-otic neural crest cells. Dev Biol 311:159–171.

    Article  PubMed  CAS  Google Scholar 

  • Sahai E. 2005. Mechanisms of cancer cell invasion. Curr Opin Genet Dev 15:87–96.

    Article  PubMed  CAS  Google Scholar 

  • Sawa M, Suetsugu S, Sugimoto A, Miki H, Yamamoto M, Takenawa T. 2003. Essential role of the C. elegans Arp2/3 complex in cell migration during ventral enclosure. J Cell Sci 116:1505–1518.

    Article  PubMed  CAS  Google Scholar 

  • Sawyer JM, Harrell JR, Shemer G, Sullivan-Brown J, Roh-Johnson M, Goldstein B. 2010. Apical constriction: A cell shape change that can drive cell morphogenesis. Dev Biol 341:5–19.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt KL, Marcus-Gueret N, Adeleye A, Webber J, Baillie D, Stringham EG. 2009. The cell migration molecule UNC-53/NAV2 is linked to the ARP2/3 complex by ABI-1. Development 136:563–574.

    Article  PubMed  CAS  Google Scholar 

  • Severson AF, Baillie DL, Bowerman B. 2002. A Formin Homology protein and a profilin are required for cytokinesis and Arp2/3-independent assembly of cortical microfilaments in C. elegans. Curr Biol 12:2066–2075.

    Article  PubMed  CAS  Google Scholar 

  • Shakir MA, Gill JS, Lundquist EA. 2006. Interactions of UNC-34 Enabled with Rac GTPases and the NIK kinase MIG-15 in Caenorhabditis elegans axon pathfinding and neuronal migration. Genetics 172:893–913.

    Article  PubMed  CAS  Google Scholar 

  • Shakir MA, Jiang K, Struckhoff EC, Demarco RS, Patel FB, Soto MC, Lundquist EA. 2008. The Arp2/3 activators WAVE and WASP have distinct genetic interactions with Rac GTPases in Caenorhabditis elegans axon guidance. Genetics 179:1957–1971.

    Article  PubMed  CAS  Google Scholar 

  • Sheffield M, Loveless T, Hardin J, Pettitt J. 2007. C. elegans Enabled exhibits novel interactions with N-WASP, Abl, and cell-cell junctions. Curr Biol 17:1791–1796.

    Article  PubMed  CAS  Google Scholar 

  • Shook D, Keller R. 2003. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev 120:1351–1383.

    Article  PubMed  CAS  Google Scholar 

  • Shoval I, Ludwig A, Kalcheim C. 2007. Antagonistic roles of full-length N-cadherin and its soluble BMP cleavage product in neural crest delamination. Development 134:491–501.

    Article  PubMed  CAS  Google Scholar 

  • Soto MC, Qadota H, Kasuya K, Inoue M, Tsuboi D, Mello CC, Kaibuchi K. 2002. The GEX-2 and GEX-3 proteins are required for tissue morphogenesis and cell migrations in C. elegans. Genes Dev 16:620–632.

    Article  PubMed  CAS  Google Scholar 

  • Steven R, Kubiseski TJ, Zheng H, Kulkarni S, Mancillas J, Ruiz Morales A, Hogue CW, Pawson T, Culotti J. 1998. UNC-73 activates the Rac GTPase and is required for cell and growth cone migrations in C. elegans. Cell 92:785–795.

    Article  PubMed  CAS  Google Scholar 

  • Stevens TL, Rogers EM, Koontz LM, Fox DT, Homem CC, Nowotarski SH, Artabazon NB, Peifer M. 2008. Using Bcr-Abl to examine mechanisms by which abl kinase regulates morphogenesis in Drosophila. Mol Biol Cell 19:378–393.

    Article  PubMed  CAS  Google Scholar 

  • Stolp B, Reichman-Fried M, Abraham L, Pan X, Giese SI, Hannemann S, Goulimari P, Raz E, Grosse R, Fackler OT. 2009. HIV-1 Nef interferes with host cell motility by deregulation of Cofilin. Cell Host Microbe 6:174–186.

    Article  PubMed  CAS  Google Scholar 

  • Struckhoff EC, Lundquist EA. 2003. The actin-binding protein UNC-115 is an effector of Rac signaling during axon pathfinding in C. elegans. Development 130:693–704.

    Article  PubMed  CAS  Google Scholar 

  • Svitkina TM, Borisy GG. 1999. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol 145:1009–1026.

    Article  PubMed  CAS  Google Scholar 

  • Teddy JM, Kulesa PM. 2004. In vivo evidence for short- and long-range cell communication in cranial neural crest cells. Development 131:6141–6151.

    Article  PubMed  CAS  Google Scholar 

  • Tournaviti S, Hannemann S, Terjung S, Kitzing TM, Stegmayer C, Ritzerfeld J, Walther P, Grosse R, Nickel W, Fackler OT. 2007. SH4-domain-induced plasma membrane dynamization promotes bleb-associated cell motility. J Cell Sci 120:3820–3829.

    Article  PubMed  CAS  Google Scholar 

  • Vanderzalm PJ, Pandey A, Hurwitz ME, Bloom L, Horvitz HR, Garriga G. 2009. C. elegans CARMIL negatively regulates UNC-73/Trio function during neuronal development. Development 136:1201–1210.

    Article  PubMed  CAS  Google Scholar 

  • Weidinger G, Wolke U, Koprunner M, Thisse C, Thisse B, Raz E. 2002. Regulation of zebrafish primordial germ cell migration by attraction towards an intermediate target. Development 129:25–36.

    PubMed  CAS  Google Scholar 

  • Williams-Masson EM, Malik AN, Hardin J. 1997. An actin-mediated two-step mechanism is required for ventral enclosure of the C. elegans hypodermis. Development 124:2889–2901.

    PubMed  CAS  Google Scholar 

  • Withee J, Galligan B, Hawkins N, Garriga G. 2004. Caenorhabditis elegans WASP and Ena/VASP proteins play compensatory roles in morphogenesis and neuronal cell migration. Genetics 167:1165–1176.

    Article  PubMed  CAS  Google Scholar 

  • Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Brocker EB, Friedl P. 2003. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160:267–277.

    Article  PubMed  CAS  Google Scholar 

  • Wood W, Jacinto A, Grose R, Woolner S, Gale J, Wilson C, Martin P. 2002. Wound healing recapitulates morphogenesis in Drosophila embryos. Nat Cell Biol 4:907–912.

    Article  PubMed  CAS  Google Scholar 

  • Woolner S, Jacinto A, Martin P. 2005. The small GTPase Rac plays multiple roles in epithelial sheet fusion – dynamic studies of Drosophila dorsal closure. Dev Biol 282:163–173.

    Article  PubMed  CAS  Google Scholar 

  • Wu YC, Cheng TW, Lee MC, Weng NY. 2002. Distinct rac activation pathways control Caenorhabditis elegans cell migration and axon outgrowth. Dev Biol 250:145–155.

    Article  PubMed  CAS  Google Scholar 

  • Wyckoff JB, Pinner SE, Gschmeissner S, Condeelis JS, Sahai E. 2006. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr Biol 16:1515–1523.

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Pring M, Wear MA, Huang M, Cooper JA, Svitkina TM, Zigmond SH. 2005. Mammalian CARMIL inhibits actin filament capping by capping protein. Dev Cell 9:209–221.

    Article  PubMed  CAS  Google Scholar 

  • Young HM, Bergner AJ, Anderson RB, Enomoto H, Milbrandt J, Newgreen DF, Whitington PM. 2004. Dynamics of neural crest-derived cell migration in the embryonic mouse gut. Dev Biol 270:455–473.

    Article  PubMed  CAS  Google Scholar 

  • Yu TW, Hao JC, Lim W, Tessier-Lavigne M, Bargmann CI. 2002. Shared receptors in axon guidance: SAX-3/Robo signals via UNC-34/Enabled and a Netrin-independent UNC-40/DCC function. Nat Neurosci 5:1147–1154.

    Article  PubMed  CAS  Google Scholar 

  • Zallen JA, Cohen Y, Hudson AM, Cooley L, Wieschaus E, Schejter ED. 2002. SCAR is a primary regulator of Arp2/3-dependent morphological events in Drosophila. J Cell Biol 156:689–701.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mark Peifer, David Reiner, Stephanie Nowotarski, Erik Lundquist, and members of the Goldstein lab for comments on the manuscript. Work in the Goldstein lab on actin dynamics in morphogenesis is supported by NIH R01 GM083071.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minna Roh-Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Roh-Johnson, M., Sullivan-Brown, J., Goldstein, B. (2010). Roles for Actin Dynamics in Cell Movements During Development. In: Carlier, MF. (eds) Actin-based Motility. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9301-1_8

Download citation

Publish with us

Policies and ethics