Coupling Membrane Dynamics to Actin Polymerization

Chapter

Abstract

WASP/WAVE family proteins are important regulators of the Arp2/3 complex, which causes exponential growth of actin filaments. WASP/WAVE proteins mediate actin polymerization for both cellular protrusions, such as filopodia and lamellipodia, and invaginations, such as coated pits for endocytosis. However, it had been unclear how the direction of actin polymerization for these topologically different structures is precisely regulated. Recently, the BAR domain superfamily members, which contain membrane-deforming or membrane-adaptor domains, were found to interact with the WASP/WAVE family proteins. These membrane-deforming or membrane-adaptor domains contain BAR, EFC/F-BAR, and IMD/I-BAR domains, which induce membrane invaginations or membrane protrusions. Due to the various geometries of the membranes bound by the BAR domain superfamily members, these proteins could connect specific membrane structures to actin filaments, mediated by the WASP/WAVE family proteins and the Arp2/3 complex.

Keywords

Actin Filament Actin Cytoskeleton Actin Polymerization Concave Surface Endocytic Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abou-Kheir, W., Isaac, B., Yamaguchi, H., and Cox, D. (2008). Membrane targeting of WAVE2 is not sufficient for WAVE2-dependent actin polymerization: a role for IRSp53 in mediating the interaction between Rac and WAVE2. J Cell Sci 121: 379–390.PubMedCrossRefGoogle Scholar
  2. Aboulaich, N., Vainonen, J.P., Stralfors, P., and Vener, A.V. (2004). Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes. Biochem J 383: 237–248.PubMedCrossRefGoogle Scholar
  3. Bastiani, M., Liu, L., Hill, M.M., Jedrychowski, M.P., Nixon, S.J., Lo, H.P., Abankwa, D., Luetterforst, R., Fernandez-Rojo, M., Breen, M.R., Gygi, S.P., Vinten, J., Walser, P.J., North, K.N., Hancock, J.F., Pilch, P.F., and Parton, R.G. (2009). MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. J Cell Biol 185: 1259–1273.PubMedCrossRefGoogle Scholar
  4. Bigay, J., Gounon, P., Robineau, S., and Antonny, B. (2003). Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426: 563–566.PubMedCrossRefGoogle Scholar
  5. Bompard, G., Sharp, S.J., Freiss, G., and Machesky, L.M. (2005). Involvement of Rac in actin cytoskeleton rearrangements induced by MIM-B. J Cell Sci 118: 5393–5403.PubMedCrossRefGoogle Scholar
  6. Cameron, L.A., Svitkina, T.M., Vignjevic, D., Theriot, J.A., and Borisy, G.G. (2001). Dendritic organization of actin comet tails. Curr Biol 11: 130–135.PubMedCrossRefGoogle Scholar
  7. Doherty, G.J., and McMahon, H.T. (2009). Mechanisms of Endocytosis. Annu Rev Biochem.Google Scholar
  8. Drab, M., Verkade, P., Elger, M., Kasper, M., Lohn, M., Lauterbach, B., Menne, J., Lindschau, C., Mende, F., Luft, F.C., Schedl, A., Haller, H., and Kurzchalia, T.V. (2001). Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293: 2449–2452.PubMedCrossRefGoogle Scholar
  9. Ford, M.G., Mills, I.G., Peter, B.J., Vallis, Y., Praefcke, G.J., Evans, P.R., and McMahon, H.T. (2002). Curvature of clathrin-coated pits driven by epsin. Nature 419: 361–366.PubMedCrossRefGoogle Scholar
  10. Frost, A., Perera, R., Roux, A., Spasov, K., Destaing, O., Egelman, E.H., De Camilli, P., and Unger, V.M. (2008). Structural basis of membrane invagination by F-BAR domains. Cell 132: 807–817.PubMedCrossRefGoogle Scholar
  11. Fujimoto, T., Nakade, S., Miyawaki, A., Mikoshiba, K., and Ogawa, K. (1992). Localization of inositol 1,4,5-trisphosphate receptor-like protein in plasmalemmal caveolae. J Cell Biol 119: 1507–1513.PubMedCrossRefGoogle Scholar
  12. Galbiati, F., Engelman, J.A., Volonte, D., Zhang, X.L., Minetti, C., Li, M., Hou, H., Jr., Kneitz, B., Edelmann, W., and Lisanti, M.P. (2001). Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem 276: 21425–21433.PubMedCrossRefGoogle Scholar
  13. Gallop, J.L., Jao, C.C., Kent, H.M., Butler, P.J., Evans, P.R., Langen, R., and McMahon, H.T. (2006). Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J 25: 2898–2910.PubMedCrossRefGoogle Scholar
  14. Govind, S., Kozma, R., Monfries, C., Lim, L., and Ahmed, S. (2001). Cdc42Hs facilitates cytoskeletal reorganization and neurite outgrowth by localizing the 58-kD insulin receptor substrate to filamentous actin. J Cell Biol 152: 579–594.PubMedCrossRefGoogle Scholar
  15. Gundelfinger, E.D., Kessels, M.M., and Qualmann, B. (2003). Temporal and spatial coordination of exocytosis and endocytosis. Nat Rev Mol Cell Biol 4: 127–139.PubMedCrossRefGoogle Scholar
  16. Hansen, C.G., Bright, N.A., Howard, G., and Nichols, B.J. (2009). SDPR induces membrane curvature and functions in the formation of caveolae. Nat Cell Biol 11: 807–814.Google Scholar
  17. Hartig, S.M., Ishikura, S., Hicklen, R.S., Feng, Y., Blanchard, E.G., Voelker, K.A., Pichot, C.S., Grange, R.W., Raphael, R.M., Klip, A., and Corey, S.J. (2009). The F-BAR protein CIP4 promotes GLUT4 endocytosis through bidirectional interactions with N-WASp and Dynamin-2. J Cell Sci 122: 2283–2291.PubMedCrossRefGoogle Scholar
  18. Henne, W.M., Kent, H.M., Ford, M.G., Hegde, B.G., Daumke, O., Butler, P.J., Mittal, R., Langen, R., Evans, P.R., and McMahon, H.T. (2007). Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. Structure 15: 839–852.PubMedCrossRefGoogle Scholar
  19. Heuser, J. (1980). Three-dimensional visualization of coated vesicle formation in fibroblasts. J Cell Biol 84: 560–583.PubMedCrossRefGoogle Scholar
  20. Hill, M.M., Bastiani, M., Luetterforst, R., Kirkham, M., Kirkham, A., Nixon, S.J., Walser, P., Abankwa, D., Oorschot, V.M., Martin, S., Hancock, J.F., and Parton, R.G. (2008). PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132: 113–124.PubMedCrossRefGoogle Scholar
  21. Ho, H.Y., Rohatgi, R., Lebensohn, A.M., Le, M., Li, J., Gygi, S.P., and Kirschner, M.W. (2004). Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-WIP complex. Cell 118: 203–216.PubMedCrossRefGoogle Scholar
  22. Hori, K., Konno, D., Maruoka, H., and Sobue, K. (2003). MALS is a binding partner of IRSp53 at cell-cell contacts. FEBS Lett 554: 30–34.PubMedCrossRefGoogle Scholar
  23. Hori, K., Yasuda, H., Konno, D., Maruoka, H., Tsumoto, T., and Sobue, K. (2005). NMDA receptor-dependent synaptic translocation of insulin receptor substrate p53 via protein kinase C signaling. J Neurosci 25: 2670–2681.PubMedCrossRefGoogle Scholar
  24. Itoh, T., and De Camilli, P. (2006). BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. Biochim Biophys Acta 1761: 897–912.PubMedCrossRefGoogle Scholar
  25. Itoh, T., Erdmann, K.S., Roux, A., Habermann, B., Werner, H., and De Camilli, P. (2005). Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev Cell 9: 791–804.PubMedCrossRefGoogle Scholar
  26. Kaksonen, M., Sun, Y., and Drubin, D.G. (2003). A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115: 475–487.PubMedCrossRefGoogle Scholar
  27. Kaksonen, M., Toret, C.P., and Drubin, D.G. (2005). A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123: 305–320.PubMedCrossRefGoogle Scholar
  28. Kaksonen, M., Toret, C.P., and Drubin, D.G. (2006). Harnessing actin dynamics for clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 7: 404–414.PubMedCrossRefGoogle Scholar
  29. Kessels, M.M., and Qualmann, B. (2002). Syndapins integrate N-WASP in receptor-mediated endocytosis. EMBO J 21: 6083–6094.PubMedCrossRefGoogle Scholar
  30. Kessels, M.M., and Qualmann, B. (2006). Syndapin oligomers interconnect the machineries for endocytic vesicle formation and actin polymerization. J Biol Chem 281: 13285–13299.PubMedCrossRefGoogle Scholar
  31. Koestler, S.A., Auinger, S., Vinzenz, M., Rottner, K., and Small, J.V. (2008). Differentially oriented populations of actin filaments generated in lamellipodia collaborate in pushing and pausing at the cell front. Nat Cell Biol 10: 306–313.PubMedCrossRefGoogle Scholar
  32. Krugmann, S., Jordens, I., Gevaert, K., Driessens, M., Vandekerckhove, J., and Hall, A. (2001). Cdc42 induces filopodia by promoting the formation of an IRSp53: Mena complex. Curr Biol 11: 1645–1655.PubMedCrossRefGoogle Scholar
  33. Lee, E., Marcucci, M., Daniell, L., Pypaert, M., Weisz, O.A., Ochoa, G.C., Farsad, K., Wenk, M.R., and De Camilli, P. (2002). Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 297: 1193–1196.PubMedCrossRefGoogle Scholar
  34. Lim, K.B., Bu, W., Goh, W.I., Koh, E., Ong, S.H., Pawson, T., Sudhaharan, T., and Ahmed, S. (2008). The Cdc42 effector IRSp53 generates filopodia by coupling membrane protrusion with actin dynamics. J Biol Chem 283: 20454–20472.PubMedCrossRefGoogle Scholar
  35. Lisanti, M.P., Scherer, P.E., Tang, Z., and Sargiacomo, M. (1994). Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol 4: 231–235.PubMedCrossRefGoogle Scholar
  36. Liu, L., and Pilch, P.F. (2008). A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization. J Biol Chem 283: 4314–4322.PubMedCrossRefGoogle Scholar
  37. Lundmark, R., Doherty, G.J., Howes, M.T., Cortese, K., Vallis, Y., Parton, R.G., and McMahon, H.T. (2008). The GTPase-activating protein GRAF1 regulates the CLIC/GEEC endocytic pathway. Curr Biol 18: 1802–1808.PubMedCrossRefGoogle Scholar
  38. Machesky, L.M., and Johnston, S.A. (2007). MIM: a multifunctional scaffold protein. J Mol Med 85: 569–576.PubMedCrossRefGoogle Scholar
  39. Massari, S., Perego, C., Padovano, V., D'Amico, A., Raimondi, A., Francolini, M., and Pietrini, G. (2009). LIN7 mediates the recruitment of IRSp53 to tight junctions. Traffic 10: 246–257.PubMedCrossRefGoogle Scholar
  40. Masuda, M., Takeda, S., Sone, M., Ohki, T., Mori, H., Kamioka, Y., and Mochizuki, N. (2006). Endophilin BAR domain drives membrane curvature by two newly identified structure-based mechanisms. EMBO J 25: 2889–2897.PubMedCrossRefGoogle Scholar
  41. Mattila, P.K., and Lappalainen, P. (2008). Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9: 446–454.PubMedCrossRefGoogle Scholar
  42. Mattila, P.K., Pykalainen, A., Saarikangas, J., Paavilainen, V.O., Vihinen, H., Jokitalo, E., and Lappalainen, P. (2007). Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain-like mechanism. J Cell Biol 176: 953–964.PubMedCrossRefGoogle Scholar
  43. Mattila, P.K., Salminen, M., Yamashiro, T., and Lappalainen, P. (2003). Mouse MIM, a tissue-specific regulator of cytoskeletal dynamics, interacts with ATP-actin monomers through its C-terminal WH2 domain. J Biol Chem 278: 8452–8459.PubMedCrossRefGoogle Scholar
  44. McMahon, H.T., and Gallop, J.L. (2005). Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438: 590–596.PubMedCrossRefGoogle Scholar
  45. McMahon, K.A., Zajicek, H., Li, W.P., Peyton, M.J., Minna, J.D., Hernandez, V.J., Luby-Phelps, K., and Anderson, R.G. (2009). SRBC/cavin-3 is a caveolin adapter protein that regulates caveolae function. EMBO J 28: 1001–1015.PubMedCrossRefGoogle Scholar
  46. Merrifield, C.J., Perrais, D., and Zenisek, D. (2005). Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121: 593–606.PubMedCrossRefGoogle Scholar
  47. Merrifield, C.J., Qualmann, B., Kessels, M.M., and Almers, W. (2004). Neural Wiskott Aldrich Syndrome Protein (N-WASP) and the Arp2/3 complex are recruited to sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur J Cell Biol 83: 13–18.PubMedCrossRefGoogle Scholar
  48. Miki, H., Yamaguchi, H., Suetsugu, S., and Takenawa, T. (2000). IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408: 732–735.PubMedCrossRefGoogle Scholar
  49. Millard, T.H., Bompard, G., Heung, M.Y., Dafforn, T.R., Scott, D.J., Machesky, L.M., and Futterer, K. (2005). Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. EMBO J 24: 240–250.PubMedCrossRefGoogle Scholar
  50. Modregger, J., Ritter, B., Witter, B., Paulsson, M., and Plomann, M. (2000). All three PACSIN isoforms bind to endocytic proteins and inhibit endocytosis. J Cell Sci 113 Pt 24: 4511–4521.Google Scholar
  51. Mundy, D.I., Machleidt, T., Ying, Y.S., Anderson, R.G., and Bloom, G.S. (2002). Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. J Cell Sci 115: 4327–4339.PubMedCrossRefGoogle Scholar
  52. Naqvi, S.N., Zahn, R., Mitchell, D.A., Stevenson, B.J., and Munn, A.L. (1998). The WASp homologue Las17p functions with the WIP homologue End5p/verprolin and is essential for endocytosis in yeast. Curr Biol 8: 959–962.PubMedCrossRefGoogle Scholar
  53. Otsuki, M., Itoh, T., and Takenawa, T.T. (2002). N-WASP is recruited to rafts and associates with endophilin A in response to EGF. J Biol Chem 278: 6461–6469.Google Scholar
  54. Palade, G.E., and Bruns, R.R. (1968). Structural modulations of plasmalemmal vesicles. J Cell Biol 37: 633–649.PubMedCrossRefGoogle Scholar
  55. Pani, B., and Singh, B.B. (2009). Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium 45: 625–633.Google Scholar
  56. Parton, R.G., and Simons, K. (2007). The multiple faces of caveolae. Nat Rev Mol Cell Biol 8: 185–194.PubMedCrossRefGoogle Scholar
  57. Pelkmans, L., Kartenbeck, J., and Helenius, A. (2001). Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3: 473–483.PubMedCrossRefGoogle Scholar
  58. Pelkmans, L., Puntener, D., and Helenius, A. (2002). Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296: 535–539.PubMedCrossRefGoogle Scholar
  59. Perrais, D., and Merrifield, C.J. (2005). Dynamics of endocytic vesicle creation. Dev Cell 9: 581–592.PubMedCrossRefGoogle Scholar
  60. Peter, B.J., Kent, H.M., Mills, I.G., Vallis, Y., Butler, P.J., Evans, P.R., and McMahon, H.T. (2004). BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303: 495–499.PubMedCrossRefGoogle Scholar
  61. Pollard, T.D., and Borisy, G.G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell 112: 453–465.PubMedCrossRefGoogle Scholar
  62. Praefcke, G.J., and McMahon, H.T. (2004). The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5: 133–147.PubMedCrossRefGoogle Scholar
  63. Qualmann, B., and Kelly, R.B. (2000). Syndapin isoforms participate in receptor-mediated endocytosis and actin organization. J Cell Biol 148: 1047–1062.PubMedCrossRefGoogle Scholar
  64. Qualmann, B., Kessels, M.M., and Kelly, R.B. (2000). Molecular links between endocytosis and the actin cytoskeleton. J Cell Biol 150: F111–F116.PubMedCrossRefGoogle Scholar
  65. Ramamurthi, K.S., Lecuyer, S., Stone, H.A., and Losick, R. (2009). Geometric cue for protein localization in a bacterium. Science 323: 1354–1357.PubMedCrossRefGoogle Scholar
  66. Razzaq, A., Robinson, I.M., McMahon, H.T., Skepper, J.N., Su, Y., Zelhof, A.C., Jackson, A.P., Gay, N.J., and O'Kane, C.J. (2001). Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila. Genes Dev 15: 2967–2979.PubMedCrossRefGoogle Scholar
  67. Richter, T., Floetenmeyer, M., Ferguson, C., Galea, J., Goh, J., Lindsay, M.R., Morgan, G.P., Marsh, B.J., and Parton, R.G. (2008). High-resolution 3D quantitative analysis of caveolar ultrastructure and caveola-cytoskeleton interactions. Traffic 9: 893–909.PubMedCrossRefGoogle Scholar
  68. Rocca, D.L., Martin, S., Jenkins, E.L., and Hanley, J.G. (2008). Inhibition of Arp2/3-mediated actin polymerization by PICK1 regulates neuronal morphology and AMPA receptor endocytosis. Nat Cell Biol 10: 259–271.PubMedCrossRefGoogle Scholar
  69. Rothberg, K.G., Heuser, J.E., Donzell, W.C., Ying, Y.S., Glenney, J.R., and Anderson, R.G. (1992). Caveolin, a protein component of caveolae membrane coats. Cell 68: 673–682.PubMedCrossRefGoogle Scholar
  70. Roux, A., Uyhazi, K., Frost, A., and De Camilli, P. (2006). GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441: 528–531.PubMedCrossRefGoogle Scholar
  71. Rozelle, A.L., Machesky, L.M., Yamamoto, M., Driessens, M.H., Insall, R.H., Roth, M.G., Luby-Phelps, K., Marriott, G., Hall, A., and Yin, H.L. (2000). Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr Biol 10: 311–320.PubMedCrossRefGoogle Scholar
  72. Saarikangas, J., Zhao, H., Pykalainen, A., Laurinmaki, P., Mattila, P.K., Kinnunen, P.K., Butcher, S.J., and Lappalainen, P. (2009). Molecular mechanisms of membrane deformation by I-BAR domain proteins. Curr Biol 19: 95–107.PubMedCrossRefGoogle Scholar
  73. Scita, G., Confalonieri, S., Lappalainen, P., and Suetsugu, S. (2008). IRSp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions. Trends Cell Biol 18: 52–60.PubMedCrossRefGoogle Scholar
  74. Shi, J., Scita, G., and Casanova, J.E. (2005). WAVE2 Signaling Mediates Invasion of Polarized Epithelial Cells by Salmonella typhimurium. J Biol Chem 280: 29849–29855.PubMedCrossRefGoogle Scholar
  75. Shimada, A., Niwa, H., Tsujita, K., Suetsugu, S., Nitta, K., Hanawa-Suetsugu, K., Akasaka, R., Nishino, Y., Toyama, M., Chen, L., Liu, Z.J., Wang, B.C., Yamamoto, M., Terada, T., Miyazawa, A., Tanaka, A., Sugano, S., Shirouzu, M., Nagayama, K., Takenawa, T., and Yokoyama, S. (2007). Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis. Cell 129: 761–772.PubMedCrossRefGoogle Scholar
  76. Soltau, M., Berhorster, K., Kindler, S., Buck, F., Richter, D., and Kreienkamp, H.J. (2004). Insulin receptor substrate of 53 kDa links postsynaptic shank to PSD-95. J Neurochem 90: 659–665.PubMedCrossRefGoogle Scholar
  77. Soulard, A., Lechler, T., Spiridonov, V., Shevchenko, A., Li, R., and Winsor, B. (2002). Saccharomyces cerevisiae Bzz1p is implicated with type I myosins in actin patch polarization and is able to recruit actin-polymerizing machinery in vitro. Mol Cell Biol 22: 7889–7906.PubMedCrossRefGoogle Scholar
  78. Suetsugu, S., Kurisu, S., Oikawa, T., Yamazaki, D., Oda, A., and Takenawa, T. (2006a). Optimization of WAVE2-complex-induced actin polymerization by membrane-bound IRSp53, PIP3, and Rac. J Cell Biol 173: 571–585.PubMedCrossRefGoogle Scholar
  79. Suetsugu, S., Murayama, K., Sakamoto, A., Hanawa-Suetsugu, K., Seto, A., Oikawa, T., Mishima, C., Shirouzu, M., Takenawa, T., and Yokoyama, S. (2006b). The RAC binding domain/IRSp53-MIM homology domain of IRSp53 induces RAC-dependent membrane deformation. J Biol Chem 281: 35347–35358.PubMedCrossRefGoogle Scholar
  80. Suh, Y.H., Pelkey, K.A., Lavezzari, G., Roche, P.A., Huganir, R.L., McBain, C.J., and Roche, K.W. (2008). Corequirement of PICK1 binding and PKC phosphorylation for stable surface expression of the metabotropic glutamate receptor mGluR7. Neuron 58: 736–748.PubMedCrossRefGoogle Scholar
  81. Svitkina, T.M., and Borisy, G.G. (1999). Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol 145: 1009–1026.PubMedCrossRefGoogle Scholar
  82. Takano, K., Toyooka, K., and Suetsugu, S. (2008). EFC/F-BAR proteins and the N-WASP-WIP complex induce membrane curvature-dependent actin polymerization. EMBO J 27: 2817–2828.PubMedCrossRefGoogle Scholar
  83. Takenawa, T., and Suetsugu, S. (2007). The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 8: 37–48.PubMedCrossRefGoogle Scholar
  84. Taunton, J., Rowning, B.A., Coughlin, M.L., Wu, M., Moon, R.T., Mitchison, T.J., and Larabell, C.A. (2000). Actin-dependent Propulsion of Endosomes and Lysosomes by Recruitment of N-WASP. J Cell Biol 148: 519–530.PubMedCrossRefGoogle Scholar
  85. Tsuboi, S., Takada, H., Hara, T., Mochizuki, N., Funyu, T., Saitoh, H., Terayama, Y., Yamaya, K., Ohyama, C., Nonoyama, S., and Ochs, H.D. (2009). FBP17 mediates a common molecular step in the formation of podosomes and phagocytic cups in macrophages. J Biol Chem 284: 8548–8556.PubMedCrossRefGoogle Scholar
  86. Tsujita, K., Suetsugu, S., Sasaki, N., Furutani, M., Oikawa, T., and Takenawa, T. (2006). Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis. J Cell Biol 172: 269–279.PubMedCrossRefGoogle Scholar
  87. Wang, Q., Navarro, M.V., Peng, G., Molinelli, E., Lin Goh, S., Judson, B.L., Rajashankar, K.R., and Sondermann, H. (2009). Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein Pacsin/Syndapin. Proc Natl Acad Sci USA 106: 12700–12705.Google Scholar
  88. Yamada, E. (1955). The fine structure of the renal glomerulus of the mouse. J Biophys Biochem Cytol 1: 551–566.PubMedCrossRefGoogle Scholar
  89. Yamada, H., Ohashi, E., Abe, T., Kusumi, N., Li, S.A., Yoshida, Y., Watanabe, M., Tomizawa, K., Kashiwakura, Y., Kumon, H., Matsui, H., and Takei, K. (2007). Amphiphysin 1 is important for actin polymerization during phagocytosis. Mol Biol Cell 18: 4669–4680.PubMedCrossRefGoogle Scholar
  90. Yamagishi, A., Masuda, M., Ohki, T., Onishi, H., and Mochizuki, N. (2004). A novel actin bundling/filopodium-forming domain conserved in insulin receptor tyrosine kinase substrate p53 and missing in metastasis protein. J Biol Chem 279: 14929–14936.PubMedCrossRefGoogle Scholar
  91. Yang, C., Hoelzle, M., Disanza, A., Scita, G., and Svitkina, T. (2009). Coordination of membrane and actin cytoskeleton dynamics during filopodia protrusion. PLoS One 4: e5678.PubMedCrossRefGoogle Scholar
  92. Yarar, D., Surka, M.C., Leonard, M.C., and Schmid, S.L. (2008). SNX9 activities are regulated by multiple phosphoinositides through both PX and BAR domains. Traffic 9: 133–146.PubMedCrossRefGoogle Scholar
  93. Yarar, D., Waterman-Storer, C.M., and Schmid, S.L. (2007). SNX9 couples actin assembly to phosphoinositide signals and is required for membrane remodeling during endocytosis. Dev Cell 13: 43–56.PubMedCrossRefGoogle Scholar
  94. Yu, X., and Cai, M. (2004). The yeast dynamin-related GTPase Vps1p functions in the organization of the actin cytoskeleton via interaction with Sla1p. J Cell Sci 117: 3839–3853.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  1. 1.Laboratory of Membrane and Cytoskeleton DynamicsInstitute of Molecular and Cellular Biosciences, The University of TokyoTokyoJapan
  2. 2.PRESTO, Japan Science and Technology AgencySaitamaJapan
  3. 3.Department of Lipid BiochemistryKobe University Graduate School of MedicineKobeJapan

Personalised recommendations