Skip to main content

Mathematical and Physical Modeling of Actin Dynamics in Motile Cells

  • Chapter
  • First Online:
Actin-based Motility

Abstract

Mathematical modeling has been very instrumental in aiding traditional experimental methods in uncovering the mysteries of actin dynamics. Here we review recent quantitative models of actin dynamics focusing on ATP hydrolysis effects, force generation by single actin filaments and networks, self-organization and dynamics of actin networks, dynamics of lamellipodia , filopodia and lamella, and integrative mechanochemistry of whole motile cells. We discuss both modeling methods and specific insights from modeling that helped answering biological questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADP:

adenosine diphosphate

ATP:

adenosine triphosphate

BR:

Brownian ratchet

CCA:

cofilin, coronin, and Aip1

CP:

capping protein

F-actin:

filamentous or polymerized actin

G-actin:

globular or unpolymerized actin

References

  • Akin O, Mullins RD (2008) Capping protein increases the rate of actin-based motility by promoting filament nucleation by the Arp2/3 complex. Cell 133:841–851

    Article  PubMed  CAS  Google Scholar 

  • Alberts JB, Odell GM (2004) In silico reconstitution of listeria propulsion exhibits nano-saltation. PLoS Biol 2:2054–2066

    Article  CAS  Google Scholar 

  • Atilgan E, Wirtz D, Sun SX (2005) Morphology of the lamellipodium and organization of actin filaments at the leading edge of crawling cells. Biophys J 89:3589–3602

    Article  PubMed  CAS  Google Scholar 

  • Atilgan E, Wirtz D, Sun SX (2006) Mechanics and dynamics of actin-driven thin membrane protrusions. Biophys J 90:65–76

    Article  PubMed  CAS  Google Scholar 

  • Bindschadler M, McGrath JL (2007) Relationships between actin regulatory mechanisms and measurable state variables. Ann Biomed Eng 35:995–1011

    Article  PubMed  Google Scholar 

  • Boal D (2002) Mechanics of the Cell. Cambridge University Press, New York

    Google Scholar 

  • Bretschneider T, Anderson K, Ecke M et al. (2009) The three-dimensional dynamics of actin waves, a model of cytoskeletal self-organization. Biophys J 96:2888–2900

    Article  PubMed  CAS  Google Scholar 

  • Bretschneider T, Diez S, Anderson K et al. (2004) Dynamic actin patterns and Arp2/3 assembly at the substrate-attached surface of motile cells. Curr Biol 14:1–10

    Article  PubMed  CAS  Google Scholar 

  • Brieher WM, Kueh HY, Ballif BA et al. (2006) Rapid actin monomer-insensitive depolymerization of Listeria actin comet by cofilin, coronin, and Aip1. J Cell Biol 175:315–324

    Article  PubMed  CAS  Google Scholar 

  • Burroughs NJ, Marenduzzo D (2007a) Three-dimensional dynamic Monte Carlo simulation of elastic actin-like ratchets. J Chem Phys 123:174908-1–174908-11

    Google Scholar 

  • Burroughs NJ, Marenduzzo D (2007b) Nonequilibrium-driven motion in actin networks: Comet tails and moving beads. Phys Rev Lett 98:238302-1–238302-4

    Article  CAS  Google Scholar 

  • Carlsson AE (2000) Force -velocity relation for growing biopolymers. Phys Rev E 62:7082–7091

    Article  CAS  Google Scholar 

  • Carlsson AE (2001) Growth of branched actin networks against obstacles. Biophys J 81:1907–1923

    Article  PubMed  CAS  Google Scholar 

  • Carlsson AE (2003) Growth velocities of branched actin networks. Biophys J 84:2907–2918

    Article  PubMed  CAS  Google Scholar 

  • Carlsson AE (2008) Model of reduction of actin polymerization forces by ATP hydrolysis . Phys Biol 5:1–9

    Article  CAS  Google Scholar 

  • Carlsson AE, Sept D (2008) Mathematical modeling of cell migration. Methods Cell Biol 84: 911–937

    Article  PubMed  CAS  Google Scholar 

  • Chan CE, Odde DJ (2008) Traction dynamics of filopodia on compliant substrates. Science 322(5908):1687–1691

    Article  PubMed  CAS  Google Scholar 

  • Charras GT, Coughlin M, Mitchison TJ et al. (2008) Life and times of a cellular bleb. Biophys J 94(5):1836–1853

    Article  PubMed  CAS  Google Scholar 

  • Danuser G (2009) Testing the lamella hypothesis: the next steps on the agenda. J Cell Sci 122(Pt 12):1959–1962

    Article  PubMed  CAS  Google Scholar 

  • Dayel MJ, Akin O, Landeryou M et al. (2009) In silico reconstitution of actin-based symmetry breaking and motility. PLoS Biol 7(9):e1000201

    Article  PubMed  CAS  Google Scholar 

  • Dickinson RB, Purich DL (2002) Clamped-filament elongation model for actin-based motors. Biophys J 82:605–617

    Article  PubMed  CAS  Google Scholar 

  • Dickinson RB, Southwick FS, Purich DL (2002) A direct-transfer polymerization model explains how the multiple profilin-binding sites in the actoclampin motor promote rapid actin-based motility. Arch Biochem Biophys 406:296–301

    Article  PubMed  CAS  Google Scholar 

  • Dickinson RB, Caro L, Purich DL (2004) Force generation by cytoskeletal filament end-tracking proteins. Biophys J 87:2838–2854

    Article  PubMed  CAS  Google Scholar 

  • Dickinson RB, Purich DL (2006) Diffusion rate limitations in actin-based propulsion of hard and deformable particles. Biophys J 91(4):1548–1563

    Article  PubMed  CAS  Google Scholar 

  • Dimilla PA, Barbee K, Lauffen burger DA (1991) Mathematical model for the effects of adhersion and mechanics on cell migration speed. Biophys J 60:15–37

    Google Scholar 

  • Ditlev JA, Vacanti NM, Novak IL et al. (2009) An open model of actin dendritic nucleation. Biophys J 96(9):3529–3542

    Article  PubMed  CAS  Google Scholar 

  • Doubrovinski K, Kruse K (2008) Cytoskeletal waves in the absence of molecular motors. EPL 83:18003

    Article  CAS  Google Scholar 

  • Flaherty B, McGarry JP, McHugh PE (2007) Mathematical models of cell motility. Cell Biochem Biophys 49(1):14–28

    Article  PubMed  CAS  Google Scholar 

  • Footer MJ, Kerssemakers JW, Theriot JA et al. (2007) Direct measurement of force generation by actin filament polymerization using an optical trap. PNAS 104:2181–2186

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara I, Takahashi S, Tadakuma H et al. (2002) Microscopic analysis of polymerization dynamics with individual actin filaments. Nat Cell Bio 4:666–673

    Article  CAS  Google Scholar 

  • Fujiwara K, Vavylonis D, Pollard TD (2007) Polymerization kinetics of ADP -and ADP-Pi –actin determined by fluorescence microscopy. Proc Natl Acad Sci USA 104:8827–8832

    Article  PubMed  CAS  Google Scholar 

  • Gerisch G, Bretschneider T, Muller-Taubenberger A et al. (2004) Mobile actin clusters and traveling waves in cells recovering from actin depolymerization. Biophys J 87:3493–3503

    Article  PubMed  CAS  Google Scholar 

  • Gholami A, Falcke M, Frey E (2008) Velocity oscillations in actin-based motility. New J Phys 10:033022

    Article  CAS  Google Scholar 

  • Giannone G, Dubin-Thaler BJ, Rossier O et al. (2007) Lamellipodial actin mechanically links myosin activity with adhesion -site formation. Cell 128(3):561–575

    Article  PubMed  CAS  Google Scholar 

  • Gracheva ME, Othmer HG (2004), A continuum model of motility in ameboid cells. Bull Math Biol 66:167–193

    Article  PubMed  Google Scholar 

  • Greene GW, Anderson TH, Zeng H et al. (2009) Force amplification response of actin filaments under confined compression. Proc Natl Acad Sci 106:445–449

    Article  PubMed  CAS  Google Scholar 

  • Gupton SL, Gertler FB (2007) Filopodia : the fingers that do the walking. Sci STKE 2007(400):re5

    Article  PubMed  Google Scholar 

  • Herant M, Marganski WA, Dembo M (2003) The mechanics of neutrophils: synthetic modeling of three experiments. Biophys J 84:3389–3413

    Article  PubMed  CAS  Google Scholar 

  • Hill TL (1986) Theoretical study of a model for the ATP cap at the end of an actin filament. Biophys J 49:981–986

    Article  PubMed  CAS  Google Scholar 

  • Hill TL, Kirschner MW (1982) Bioenergetics and kinetics of microtubule and actin filament assembly- disassembly . Int Rev Cytol 78:1–125

    Article  PubMed  CAS  Google Scholar 

  • Howard J (2001) Mechanics of Motor Proteins and the Cytoskeleton. Sinauer, Sunderland, MA

    Google Scholar 

  • Huber F, Käs J, Stuhrmann B (2008) Growing actin networks form lamellipodium and lamellum by self-assembly. Biophys J 95(12):5508–5523

    Article  PubMed  CAS  Google Scholar 

  • Ideses Y, Brill-Karniely Y, Haviv L et al. (2008) Arp2/3 branched actin network mediates filopodia-like bundles formation in vitro. PLoS ONE 3(9):e3297

    Article  PubMed  CAS  Google Scholar 

  • Kang H, Wen Q, Janmey PA et al. (2009) Nonlinear elasticity of stiff filament networks: strain stiffening, negative normal stress, and filament alignment in fibrin gels. J Phys Chem B 113(12):3799–3805

    Article  PubMed  CAS  Google Scholar 

  • Keiser T, Schiller A, Wegner A (1986) Nonlinear increase of elongation rate of actin filaments with actin monomer concentration. Biochemistry 25:4899–4906

    Article  PubMed  CAS  Google Scholar 

  • Keren K, Pincus Z, Allen GM et al. (2008) Mechanism of shape determination in motile cells. Nature 453(7194):475–480

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Sun SX (2009) Continuum modeling of forces in growing viscoelastic cytoskeletal networks. J Theor Biol 256(4):596–606

    Article  PubMed  Google Scholar 

  • Koestler SA, Auinger S, Vinzenz M et al. (2008) Differently oriented populations of actin filaments generation in lamellipodia collaborate in pushing and pausing at the cell front. Nat Cell Biol 10(3):306–313

    Article  PubMed  CAS  Google Scholar 

  • Kraikivski P, Slepchenko BM, Novak IL (2008) Actin bundling: initiation mechanisms and kinetics. Phys Rev Lett 101(12):128102

    Article  PubMed  CAS  Google Scholar 

  • Kueh HY, Brieher WM, Mitchison TJ (2008a) Dynamic stabilization of actin filaments. Proc Natl Acad Sci 105:16531–16536

    Article  PubMed  CAS  Google Scholar 

  • Kueh HY, Charras GT, Mitchison TJ et al. (2008b) Actin disassembly by cofilin, coronin, and Aip1 occurs in bursts and is inhibited by barbed-end cappers. JCB 182:341–353

    Article  PubMed  CAS  Google Scholar 

  • Kuhn JR, Pollard TD (2005) Real-time measurements of actin filament polymerization by total internal reflection fluorescence microscopy. Biophys J 88:1387–1402

    Article  PubMed  CAS  Google Scholar 

  • Lämmermann T, Sixt M (2009) Mechanical modes of “amoeboid” cell migration. Curr Opin Cell Biol. 21, 636–644

    Article  PubMed  CAS  Google Scholar 

  • Lan Y, Papoian GA (2008) The Stochastic dynamics of filopodial growth, Biophys J 94:3839–3852

    Google Scholar 

  • Larripa K, Mogilner A (2006). Transport of a 1D viscoelastic actin-myosin strip of gel as a model of a crawling cell. Physica A – Stat Mech Appl 372: 113–123

    Article  CAS  Google Scholar 

  • Lee KC, Liu AJ (2008) New proposed mechanism of actin-polymerization-driven motility. Biophys J 95:4529–4539

    Article  PubMed  CAS  Google Scholar 

  • Lee KC, Liu AJ (2009) Force -velocity relation for actin-polymerization-driving motility from Brownian dynamics simulations. Biophys J 97:1295–1304

    Article  PubMed  CAS  Google Scholar 

  • Li X, Kierfeld J, Lipowsky R (2009) Actin polymerization and depolymerization coupled to cooperative hydrolysis. Phys Rev Lett 103:048102

    Article  PubMed  CAS  Google Scholar 

  • Liu AP, Richmond DL, Maibaum L et al. (2008) Membrane-induced bundling of actin filaments. Nat Phys 4:789–793

    Article  PubMed  CAS  Google Scholar 

  • Machacek M, Hodgson L, Welch C et al. (2009) Coordination of Rho GTPase activities during cell protrusion . Nature 461(7260):99–103

    Article  PubMed  CAS  Google Scholar 

  • Maly IV, Borisy GG (2001) Self-organization of a propulsive actin network as an evolutionary process. PNAS 98:11324–11329

    Article  PubMed  CAS  Google Scholar 

  • Marcy Y, Prost J, Carlier MF et al. (2004) Forces generated during actin-based propulsion: A direct measurement by micromanipulation. Proc Natl Acad Sci USA 101:5992–5997

    Article  PubMed  CAS  Google Scholar 

  • Marée AF, Jilkine A, Dawes A et al. (2006) Polarization and movement of keratocytes: a multiscale modeling approach. Bull Math Biol 68(5):1169–1211

    Article  PubMed  CAS  Google Scholar 

  • Matzavinos A, Othmer HG (2007) A stochastic analysis of actin polymerization in the presence of twinfilin and gelsolin. J Theor Biol 249(4):723–736

    Article  PubMed  CAS  Google Scholar 

  • Mogilner A (2006). On the edge: modeling protrusion. Curr Op Cell Biol 18:32–39

    Article  PubMed  CAS  Google Scholar 

  • Mogilner A (2009) Mathematics of cell motility: Have we got its number? J Math Biol 58:105–134

    Article  PubMed  Google Scholar 

  • Mogilner A, Edelstein-Keshet L (2002) Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys J 83(3):1237–1258

    Article  PubMed  CAS  Google Scholar 

  • Mogilner A, Oster GF (2003) Force generation by actin polymerization II: The elastic ratchet and tethered filaments. Biophys J 84:1591–1605

    Article  PubMed  CAS  Google Scholar 

  • Mogilner A, Oster GF (1996) The physics of lamellipodial protrusion . Eur Biophys J 25:47–53

    Article  Google Scholar 

  • Mogilner A, Rubinstein B (2005) The physics of filopodial protrusion . Biophys J 89(2): 782–795

    Article  PubMed  CAS  Google Scholar 

  • Mullins RD, Heuser JA, Pollard TD (1998) The interaction of Arp2/3 complex with actin: Nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci USA 95:6181–6186

    Article  PubMed  CAS  Google Scholar 

  • Nishimura SI, Ueda M, Sasai M (2009) Cortical factor feedback model for cellular locomotion and cytofission. PLoS Comput Biol 5(3):e1000310

    Article  PubMed  CAS  Google Scholar 

  • Oelz D, Schmeiser C, Small JV (2008) Modeling of the actin-cytoskeleton in symmetric lamellipodial fragments. Cell Adh Migr 2(2):117–126

    Article  PubMed  Google Scholar 

  • Oosawa F, Asakura S (1962) A theory of linear and helical aggregations of macromolecules. J Mol Biol 4:10–21

    Article  PubMed  CAS  Google Scholar 

  • Parekh SH, Chaudhuri O, Theriot JA et al. (2005) Loading history determines the velocity of actin-network growth. Nat Cell Biol 7: 1219–1223

    Article  PubMed  CAS  Google Scholar 

  • Paul R, Heil P, Spatz JP et al. (2008) Propagation of mechanical stress through the actin cytoskeleton toward focal adhesions: model and experiment. Biophys J 94(4):1470–1482

    Article  PubMed  CAS  Google Scholar 

  • Peskin CS, Odell GM, Oster GF (1993) Cellular motions and thermal fluctuations: The Brownian ratchet. Biophys J 65:316–324

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD (1986) Rate constants for the reactions of ATP - and ADP -actin with the ends of actin filaments. J Cell Biol 103:2747–2754

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD (2003) The Cytoskeleton, Cellular motility, and the reductionist agenda. Nature 422:741–745

    Google Scholar 

  • Pronk S, Geissler PL, Fletcher DA (2008) Limits of filopodium stability. Phys Rev Lett 100(25):258102

    Article  PubMed  CAS  Google Scholar 

  • Rafelski SM, Alberts JB, Odell GM (2009) An experimental and computational study of the effect of acta polarity of the speed of listeria monocytogens actin-based motility. PLoS Comput Bio 5:1–14

    Google Scholar 

  • Ridley AJ, Schwartz MA, Burridge K et al. (2003) Cell migration: integrating signals from front to back. Science 302(5651):1704–1709

    Article  PubMed  CAS  Google Scholar 

  • Rosenbluth MJ, Crow A, Shaevitz JW et al. (2008) Slow stress propagation in adherent cells. Biophys J 95(12):6052–6059

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein B, Fournier MF, Jacobson K et al. (2009) Actin-myosin viscoelastic flow in the keratocyte lamellipod. Biophys. J. 97, 1853–1863

    CAS  Google Scholar 

  • Rubinstein B, Jacobson K, Mogilner A (2005) Multiscale two-dimensional modeling of a motile simple-shaped cell. Multiscale Model Simul 3(2):413–439

    Article  PubMed  CAS  Google Scholar 

  • Sambeth R, Baumgaertner A (2001) Autocatalytic polymerization generates persistent random walk of crawling cells. Phys Rev Lett 86:5196–5199

    Article  PubMed  CAS  Google Scholar 

  • Sarvestani AS, Jabbari E (2009) Analysis of cell locomotion on ligand gradient substrates. Biotechnol Bioeng 103(2):424–429

    Article  PubMed  CAS  Google Scholar 

  • Satulovksy J, Lui R, Wang YL (2008) Exploring the control circuit of cell migratin by mathematical modeling. Biophys J 94(9):3671–3683

    Article  CAS  Google Scholar 

  • Schaus TE, Borisy GG (2008) Performance of a population of independent filaments in lamellipodial protrusion. Biophys J 85:1393–1411

    Article  CAS  Google Scholar 

  • Schaus TE, Taylor EW, Borisy, GG (2007). Self-organization of actin filament orientation in the dendritic-nucleation/array-treadmilling model. Proc. Natl. Acad. Sciences 104, 7086–7091

    Article  CAS  Google Scholar 

  • Shaevitz JW, Fletcher DA (2007) Load fluctuations drive actin network growth. PNAS 104:15688–15693

    Article  PubMed  CAS  Google Scholar 

  • Shemesh T, Otomo T, Rosen MK, Bershadsky AD, Kozlov MM (2005) A Novel mechanism of actin filament processive capping by formins solution of the rotation pardox. J Cell Biol 170:889–893

    Google Scholar 

  • Shemesh T, Kozlov MM (2007) Actin polymerization upon processive capping by formin : a model for slowing and acceleration. Biophys J 92:1512–1521

    Article  PubMed  CAS  Google Scholar 

  • Shemesh T, Verkhovsky AB, Svitkina TM et al. (2009) Role of focal adhesions and mechanical stresses in the formation and progression of the lamellum interface. Biophys J 97(5):1254–1264

    Article  PubMed  CAS  Google Scholar 

  • Shlomovitz R, Gov NS (2007) Membrane waves driven by actin and myosin . Phys Rev Lett 98(16):168103

    Article  PubMed  CAS  Google Scholar 

  • Slepchenko BM, Schaff JC, Macara IG et al. (2003) Quantitative cell biology with the virtual cell. Trends Cell Biol 13:570–576

    Article  PubMed  CAS  Google Scholar 

  • Small V and Celis JE (1978) Filament arrangements in negatively stained cultured cells. Eur J Cell Biol 16:308–325

    CAS  Google Scholar 

  • Small V, Herzog M, and Anderson K (1995) Actin filament organization in the fish keratocyte lamellipodium. J Cell Biol 129:1275–1286

    Article  PubMed  CAS  Google Scholar 

  • Steketee M, Balazovich K, Tosney KW (2001) Filopodial initiation and a novel filament-organizing center, the focal ring. Mol Biol Cell 12(8):2378–2395

    PubMed  CAS  Google Scholar 

  • Stéphanou A, Mylona E, Chaplain M et al. (2008) A computational model of cell migration coupling the growth of focal adhesions with oscillatory cell protrusions. J Theor Biol 253(4):701–716

    Article  PubMed  Google Scholar 

  • Stolarska MA, Kim Y, Othmer HG (2009) Multi-scale models of cell and tissue dynamics. Philos Transact A Math Phys Eng Sci 367(1902):3525–3553

    Article  PubMed  Google Scholar 

  • Stukalin EB, Kolomeisky AB (2006) ATP hydrolysis stimulates large length fluctuations in single actin filaments. Biophys J 90:2673–2685

    Article  PubMed  CAS  Google Scholar 

  • Svitkina TM, Bulanova EA, Chaga OY et al. (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 160(3)409–421

    Article  PubMed  CAS  Google Scholar 

  • Tang JX, Käs JA, Shah JV et al. (2001) Counterion-induced actin ring formation. Eur Biophys J 30(7):477–484

    Article  PubMed  CAS  Google Scholar 

  • Vallotton P, Small JV (2009) Shifting view on the leading role of the lamellopodium in cell migration: speckle tracking revisited. J Cell Sci 122(Pt 12):1955–1958

    Article  PubMed  CAS  Google Scholar 

  • van der Gucht J, Paluch E, Plastino J et al. (2005) Stress release drives symmetry breaking for actin-based movement. Proc Natl Acad Sci USA 102:7847–7852

    Article  PubMed  CAS  Google Scholar 

  • van Oudenaarden A, Theriot JA (1999). Cooperative symmetry-breaking by actin polymerization in a model for cell motility. Nat Cell Biol 1, 493–499.

    Article  PubMed  CAS  Google Scholar 

  • Vavylonis D, Yang Q, O’Shaughnessy B (2005) Actin polymerization kinetics, cap structure, and fluctuations. PNAS 102:8543–8548

    Article  PubMed  CAS  Google Scholar 

  • Vavylonis D, Kovar DR, O’Shaughnessy B et al. (2006) Model of formin-associated actin filament elongation. Mol Cell 21:455–466

    Article  PubMed  CAS  Google Scholar 

  • Veksler A, Gov NS (2007) Phase transitions of the coupled membrane-cytoskeleton modify cellular shape. Biophys J 93(11):3798–3810

    Article  PubMed  CAS  Google Scholar 

  • Vicker MG (2002) F-actin assembly in Dicytostelium cell locomotion and shape oscillations propagates as a self-organized reaction-diffusion wave. FEBS Lett 510:5–9

    Article  PubMed  CAS  Google Scholar 

  • Wegner A (1976) Head to tail polymerization of actin. J Mol Biol 108:139–150

    Article  PubMed  CAS  Google Scholar 

  • Weiner OD, Marganski WA, Wu LF et al. (2007) An actin-based wave generator organizes cell motility. PLoS Bio 5:2053–2063

    CAS  Google Scholar 

  • Whitelam S, Bretschneider T, Burroughs NJ (2009) Tranformation from spots to waves in a model of actin pattern formation. Phys Rev Lett 102:198103

    Article  PubMed  CAS  Google Scholar 

  • Wolgemuth CW, Mogilner A, Oster GF (2004) The hydration dynamics of polyelectrolyte gels with applications to cell motility and drug delivery. Eur Biophys J 33(2):146–158

    Article  PubMed  CAS  Google Scholar 

  • Wolgemuth CW (2005) Lamellspodral contractions during crawling and spreading. Biophys J 89:1643–1649

    Google Scholar 

  • Yang L, Effler JC, Kutscher BL et al. (2008) Modeling cellular deformations using the level set formalism. BMC Syst Biol 2:68

    Article  PubMed  CAS  Google Scholar 

  • Yang HC, Pon LA (2002) Actin cable dynamics in budding yeast. Proc Natl Acad Sci USA 99:751–756

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Sept D, Carlsson AE (2006) Energetics and dynamics of constrained actin filament bundling. Biophys J 90(12):4295–4304

    Article  PubMed  CAS  Google Scholar 

  • Yarmola ET, Dranishnikov DA, Bubb MR (2008) Effect of profilin on actin critical concentration: a theoretical analysis. Biophys J 96: 1232–1233

    Google Scholar 

  • Zhu J, Carlsson AE (2006) Growth of attached actin filaments. Eur Phys J 21:209–222

    CAS  Google Scholar 

  • Zhuravlev PI, Papoian GA (2009) Molecular noise of capping protein binding induces macroscopic instability in filopodial dynamics. Proc Natl Acad Sci USA 106(28):11570–11575

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH GLUE Grant “Cell Migration Consortium” (NIGMS U54 GM64346), by NSF Grant DMS-0315782 to A.M., and NIH Grant R01 GM086882 to A.E.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders E. Carlsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Carlsson, A.E., Mogilner, A. (2010). Mathematical and Physical Modeling of Actin Dynamics in Motile Cells. In: Carlier, MF. (eds) Actin-based Motility. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9301-1_16

Download citation

Publish with us

Policies and ethics