Skip to main content

LiDAR Overview

  • Chapter
  • First Online:

Abstract

LiDAR is rapidly gaining prominence in coral reef research and management due to its ability to represent complex topographic structures with very high precision. The technology is now moving out of the research arena into operational use with an accompanied dramatic drop in survey cost. Typically aircraft mounted, LiDAR instruments are capable of auditing large areas more rapidly than could be achieved using more traditional vessel-based techniques. LiDAR, in contrast to passive optical remote sensing data, which rely on inference using some radiance measurement or reflectance index, provides direct measurements of elevation from which both terrestrial and marine topography can be easily derived. The combination of high point density scanning laser altimetry data coupled with high precision GPS provide very detailed three-dimensional information. While typically used as the basis for mapping, these data are also well poised for the derivation of coral reef biophysical properties, such as seabed geomorphology, rugosity, texture and bed-form geometry. In turn, such parameters can be related to both the biology and geology of the audited ecosystem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Suggested Reading

  • Brock JC, Purkis SJ (eds) (2009) Coastal applications of airborne LiDAR remote sensing. J Coast Res 25(6):59–65 (Special issue)

    Google Scholar 

  • Guenther GC (2007) Digital elevation model technologies and applications: the DEM users manual. In: Maune D (ed) Airborne LiDAR bathymetry, 2nd edn. American Society for Photogrammetry and Remote Sensing, USA, pp 253–320 (Chapter 8)

    Google Scholar 

  • Lillesand TM, Kiefer RW, Chipman JW (2004) Remote sensing and image interpretation, 5th edn. Wiley, New York

    Google Scholar 

  • Purkis SJ, Klemas V (2011) Global environmental change and remote sensing. Wiley, New York

    Google Scholar 

References

  • Ackermann F (1999) Airborne laser scanning: present status and future expectations. ISPRS J Phogrammetry Remote Sens 54:64–67

    Article  Google Scholar 

  • Adams MD (2000) LiDAR design, use, and calibration concepts for correct environmental detection. IEEE Trans Robot Autom 16:753–761

    Article  Google Scholar 

  • Alpers W, Hennings I (1984) A theory for the imaging mechanism of underwater bottom topography by real and synthetic aperture radar. J Geophys Res 89:10529–10546

    Article  Google Scholar 

  • Arefi H, Hahn M (2005) A hierarchical procedure for segmentation and classification of airborne LiDAR images. In: Geoscience and remote sensing symposium, IGARSS ‘05, Vol 7, pp 4950–4953

    Google Scholar 

  • Arens JC, Wright CW, Sallenger AH, Krabill WB, Swift RN (2002) Basis and methods of NASA airborne topo-graphic mapper LiDAR surveys for coastal studies. J Coast Res 18:1–13

    Google Scholar 

  • Babichenko S, Poryvkina L (1992) Laser remote sensing of phytoplankton pigments. LiDAR Remote Sens SPIE 1714:127–131

    Article  Google Scholar 

  • Baltsavias EP (1999) A comparison between photogrammetry and laser scanning. ISPRS J Photogrammetry Remote Sen 54:83–94

    Article  Google Scholar 

  • Bellian JA, Kerans C, Jennette DC (2005) Digital outcrop models: applications of terrestrial scanning LiDAR technology in stratigraphic modelling. J Sediment Res 75:166–176

    Article  Google Scholar 

  • Blair JB, Rabine DL, Hofton MA (1999) The laser vegetation imaging sensor: a medium-altitude, digitization-only, airborne laser altimeter for mapping vegetation and topography. ISPRS J Photogrammetry Remote Sens 54:115–122

    Article  Google Scholar 

  • Blanchon P, Jones B, Kalbfleisch W (1997) Anatomy of a fringing reef around Grand Cayman: storm rubble, not coral framework. J Sediment Res 67:1–16

    Google Scholar 

  • Bonisteel JM, Nayegandhi A, Wright CW, Brock JC, Nagle DB (2009) Experimental advanced airborne research LiDAR (EAARL) data processing manual. U.S. Geological Survey Open-File Report 2009-1078, p 38

    Google Scholar 

  • Braithwaite CJR, Montaggioni LF, Camoin GF, Dalmasso H, Dullo WC, Mangini A (2000) Origins and development of Holocene coral reefs: a revisited model based on reef boreholes in the Seychelles, Indian Ocean. Int J Earth Sci 89:431–445

    Article  Google Scholar 

  • Brock J, Sallenger A (2000) Airborne topographic mapping for coastal science and resource management. USGS Open-File Report 01-46

    Google Scholar 

  • Brock J, Wright CW, Hernandez R, Thompson P (2006) Airborne LiDAR sensing of massive stony coral colonies on patch reefs in the Northern Florida reef tract. Remote Sens Environ 104:31–42

    Article  Google Scholar 

  • Brock JC, Palaseanu-Lovejoy M, Wright CW, Nayegandhi A (2008) Patch-reef morphology as a proxy for Holocene sea-level variability, Northern Florida Keys, USA. Coral Reefs 27:555–568

    Article  Google Scholar 

  • Brock JC, Purkis SJ (2009b) The emerging role of LiDAR remote sensing in coastal research and resource management. J Coastal Res 53:1–5

    Article  Google Scholar 

  • Brock JC, Sallenger AH, Krabill WB, Swift RN, Wright CW (2001) Recognition of fiducial surfaces in LiDAR surveys of coastal topography. Photogrammetric Eng Remote Sens 67:1245–1258

    Google Scholar 

  • Brock JC, Wright CW, Clayton TD, Nayegandhi A (2004) LiDAR optical rugosity of coral reefs in Biscayne National Park, Florida. Coral Reefs 23:48–59

    Article  Google Scholar 

  • Cecchi G, Palombi L, Mochi I, Lognoli D, Raimondi V, Tirelli D (2004) LiDAR measurement of the attenuation coefficient of natural waters. In: Proceedings of the 22nd international laser radar conference, European Space Agency, Paris, p 827

    Google Scholar 

  • Churnside J, Hunter J (1997) Laser remote sensing of epipelagic fishes. In: Proceedings of laser remote sensing of natural waters: from theory to practice, SPIE, vol 2964., pp 38–53

    Google Scholar 

  • Collin A, Archambault P, Long B (2008) Mapping the shallow water seabed habitat with SHOALS. IEEE Trans Geosci Remote Sens 46:2947–2955

    Article  Google Scholar 

  • Costa BM, Battista TA, Pittman SJ (2009) Comparative evaluation of airborne LiDAR and ship-based multibeam SoNAR bathymetry and intensity for mapping coral reef ecosystems. Remote Sens Environ 113:1082–1100

    Article  Google Scholar 

  • Churnside JH, Demer DA, Mahmoudi B (2003) A comparison of LiDAR and echosounder measurements of fish schools in the Gulf of Mexico. ICES J Mar Sci 60:147–154

    Article  Google Scholar 

  • Dartnell P (2000) Applying remote sensing techniques to map seafloor geology/habitat relationships. Master’s thesis, San Francisco State University, CA

    Google Scholar 

  • Dekker AG (1993) Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing. PhD thesis, Vrije Universiteit Amsterdam. ISBN 90-9006234-3

    Google Scholar 

  • Dubayah RO, Drake JB (2000) LiDAR remote sensing of forestry. J Forest 98:44–46

    Google Scholar 

  • Durand D, Bijaoui J, Cauneau F (2000) Optical remote sensing of shallow-water environmental parameters: a feasibility study. Remote Sens Environ 73:152–161

    Article  Google Scholar 

  • Fabricius K, De’ath G, McCook L, Turak E, Williams DM (2005) Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef. Mar Pollut Bull 51:384–398

    Article  Google Scholar 

  • Fang H-T, Huang D-S (2004) Noise reduction in LiDAR signals based on discrete wavelet transform. Optics Communications 233:67–76

    Article  Google Scholar 

  • Filin S (2004) Surface classification from airborne laser scanning data. Comput Geosci 30:1033–1041

    Article  Google Scholar 

  • Foster G, Walker BK, Riegl BM (2009) Interpretation of single-beam acoustic backscatter using LiDAR-derived topographic complexity and benthic habitat classifications in a coral reef environment. J Coastal Res 53:16–26

    Article  Google Scholar 

  • Gares PA, Wang Y, White SA (2006) Using LiDAR to monitor a beach nourishment project at Wrightsville Beach, North Carolina, USA. J Coastal Res 22:1206–1219

    Article  Google Scholar 

  • Gordon HR, Morel AY (1983) Remote assessment of ocean color for interpretation of satellite visible imagery: a review. Springer Verlag, New York (Volume 4 of Lecture notes on coastal and estuarine studies)

    Book  Google Scholar 

  • Greene HG, Kvitek R, Bizzaro JJ, Bretz C, Iampietro PJ (2004) Fisheries habitat characterization of the California continental margin. California sea Grant College Program, University of California, CA

    Google Scholar 

  • Guenther G (2007) Airborne LiDAR bathymetry digital elevation. Model technologies and applications. In: Maune D (ed.) The DEM users manual. American Society for Photogrammetry and Remote Sensing, pp 253–320

    Google Scholar 

  • Guenther G, LaRocque P, Lillycrop W (1994) Multiple surface channels in SHOALS airborne LiDAR. SPIE: Ocean Optics XII 2258:422–430

    Google Scholar 

  • Guenther GC, Tomas RWL, LaRocque PE (1996) Design considerations for achieving high accuracy with the SHOALS bathymetric LiDAR system. In: Proceedings of laser remote sensing of natural waters: from theory to practice, SPIE, 15:54–71

    Google Scholar 

  • Guenther GC, Brooks MW, LaRocque PE (2000) New capabilities of the SHOALS airborne LiDAR bathymeter. Remote Sens Environ 73:247–255

    Article  Google Scholar 

  • Gutierrez R, Gibeaut JC, Crawford MM, Mahoney MP, Smith S, Gutelius W, MacPherson CDE (1998) Airborne laser swath mapping of Galveston Island and Bolivar Peninsula, Texas. In: Proceedings of 5th international conference on remote sensing for marine and coastal environments, San Diego 1:236–243

    Google Scholar 

  • Harding DJ, Lefsky MA, Parker GG, Blair JB (2001) Laser altimetry height profiles methods and validation for closed-canopy, broadleaf forests. Remote Sens Environ 76:283–297

    Article  Google Scholar 

  • Harris PM, Purkis SJ, Ellis J (2011) Analyzing spatial patterns in modern carbonate sand bodies from Great Bahama Bank. J Sediment Res 81:185–206

    Article  Google Scholar 

  • Harsdorf S, Janssen M, Reuter R, Wachowicz B (1997) Design of an ROV-based LiDAR for seafloor monitoring. In: Analysis of water quality and pollutants. Proceedings of SPIE, Vol 3107, pp 288–297

    Google Scholar 

  • Hedley JD, Mumby PJ (2003) A remote sensing method for resolving depth and subpixel composition of aquatic benthos. Limnol Oceanogr 48:480–488

    Article  Google Scholar 

  • Hoge FE (2006) Beam attenuation coefficient retrieval by inversion of airborne LiDAR-induced chromophoric dissolved organic matter fluorescence. I Theor Appl Opt 45:2344–2351

    Article  Google Scholar 

  • Hopley D (1982) The geomorphology of the Great Barrier Reef: quaternary development of coral reefs. Wiley, New York

    Google Scholar 

  • Hopley D, Smithers SG, Parnell K (2007) The geomorphology of the Great Barrier Reef: development, diversity, and change. Vol xiii., Cambridge University Press, Cambridge, p 532

    Google Scholar 

  • Irish J, Lillycrop W (1999) Scanning laser mapping of the coastal zone: the SHOALS system. J Photogrammetry Remote Sens 54:123

    Article  Google Scholar 

  • Irish JL, White TE (1998) Coastal engineering applications of high-resolution LiDAR bathymetry. Coast Eng 35:47–71

    Article  Google Scholar 

  • Jenness JS (2002) Calculating landscape surface area from digital elevation models. Wildl Soc Bull 32:829–839

    Article  Google Scholar 

  • Katzenbeisser R (2003) About the calibration of LiDAR sensors. In: 3-D Reconstruction form Airborne Laser-Scanner and InSAR data. ISPRS Workshop, 8–10 Oct, Dresden

    Google Scholar 

  • Kempeneers P, Deronde B, Provoost S, Houthuys R (2009) Synergy of airborne digital camera and LiDAR data to map coastal dune vegetation. J Coastal Res 53:73–82

    Article  Google Scholar 

  • Klemas VV (2009) The role of remote sensing in predicting and determining coastal storm impacts. J Coastal Res 25:1264–1275

    Article  Google Scholar 

  • Kopilevich YI, Feygels VI, Tuell GH, Surkov A (2005) Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne LiDAR system (SHOALS): I. Theoretical Background. In: Proceedings of SPIE. vol 5885

    Google Scholar 

  • Krekova MM, Krekov GM, Samokhvalov IV, Shamanaev VS (1994) Numerical evaluation of the possibilities of remote laser sensing of fish schools. Appl Opt 33:5715–5720

    Article  Google Scholar 

  • Lapointe BE, Clark MW (1992) Nutrient inputs from the watershed and coastal eutrophication in the Florida Keys. Estuaries Coasts 15:465–476

    Article  Google Scholar 

  • LaRocque PE, West GR (1990) Airborne laser hydrography: an introduction. In: ROPME/PERSGA/IHB workshop on hydrographic activities in the ROPME sea area and Red Sea (Kuwait City)

    Google Scholar 

  • Latypov D (2002) Estimating relative LiDAR accuracy information from overlapping flight lines. ISPRS J Photogrammetry Remote Sens 56:236–245

    Article  Google Scholar 

  • Latypov D (2005) Effects of laser beam alignment tolerance on LiDAR accuracy. ISPRS J Photogrammetry Remote Sens 59:361–368

    Article  Google Scholar 

  • Lee Z, Carder KL, Mobley CD, Steward RG, Patch JS (1999) Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization. Appl Opt 38:3831–3853

    Article  Google Scholar 

  • Lefsky MA, Cohen WB, Parker GG, Harding DJ (2002) LiDAR remote sensing for ecosystem studies. Bioscience 52:19–30

    Article  Google Scholar 

  • Lyzenga DR (1981) Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data. Int J Remote Sens 2:71–82

    Article  Google Scholar 

  • Lyzenga DR (1991) Interaction of short surface and electromagnetic waves with ocean fronts. J Geophys Res 93:10765–10772

    Article  Google Scholar 

  • Lyzenga DR, Malinas NP, Tanis FJ (2006) Multispectral bathymetry using a simple physically based algorithm. IEEE Trans Geosci Remote Sens 44:2251–2259

    Article  Google Scholar 

  • McCormick MI (1994) Comparison of field methods for measuring surface topography and their associations with a tropical reef fish assemblage. Mar Ecol Prog Ser 112:87–96

    Article  Google Scholar 

  • McKean J, Nagel D, Tonina D, Bailey P, Wright CW, Bohn C, Nayegandhi A (2009) Remote sensing of channels and riparian zones with a narrow-beam aquatic-terrestrial LIDAR. Remote Sens 1:1065–1096

    Article  Google Scholar 

  • Mohammadzadeh A, Valadan Zoej MJ (2008) A state of art on airborne LiDAR application in hydrology and oceanography: a comprehensive overview. Int Arch Photogrammetry, Remote Sens Spat Inf Sci 37:315–320 (Part B1. Beijing)

    Google Scholar 

  • Mumby PJ, Edwards AJ, Arias-González JE, Lindeman KC, Blackwell PG, Gall A, Gorczynska MI, Harborne AR, Pescod CL, Renken H, Wabnitz CC, Llewellyn G (2004) Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427:533–536

    Article  Google Scholar 

  • Murase T, Tanaka M, Tani T, Miyashita Y, Ohkawa N, Ishiguro S, Suzuki Y, Kayanne H, Yamano H (2008) A Photogrammetric correction procedure for light refraction effects at a two-medium boundary. Photogrammetric Eng Remote Sens 74:1129–1135

    Google Scholar 

  • Nayegandhi A, Brock JC (2008) Assessment of coastal vegetation habitats using LiDAR. In: Yang X (ed) Lecture notes in geoinformation and cartography—remote sensing and geospatial technologies for coastal ecosystem assessment and management. Springer, pp 365–389

    Google Scholar 

  • Nayegandhi A, Brock JC, Wright CW (2009) Small-footprint, waveform-resolving LiDAR estimation of submerged and sub-canopy topography in coastal environments. Int J Remote Sens 30:861–878

    Article  Google Scholar 

  • Pastol Y, Le Roux C, Louvart L (2007) LITTO3D: a seamless digital terrain model. Int Hydrogr Rev 8:38–44

    Google Scholar 

  • Pe’eri S, Philpot W (2007) Increasing the existence of very shallow-water LiDAR measurements using the red-channel waveforms. IEEE Trans Geosci Remote Sens 45:1217–1223

    Article  Google Scholar 

  • Perry CT, Smithers SG, Johnson KG (2009) Long-term coral community records from Lugger Shoal on the terrigenous inner-shelf of the central Great Barrier Reef, Australia. Coral Reefs 28:1432

    Google Scholar 

  • Purkis SJ, Graham NAJ, Riegl BM (2008) Predictability of reef fish diversity and abundance using remote sensing data in Diego Garcia (Chagos Archipelago). Coral Reefs 27:167–178

    Article  Google Scholar 

  • Purkis SJ, Kohler KE (2008) The role of topography in promoting fractal patchiness in a carbonate shelf landscape. Coral Reefs 27:977–989

    Article  Google Scholar 

  • Purkis SJ, Kohler KE, Riegl BM, Rohmann SE (2007) The statistics of natural shapes in modern coral reef landscapes. J Geol 115:493–508

    Article  Google Scholar 

  • Purkis SJ, Rowlands GP, Riegl BM, Renaud PG (2010) The paradox of tropical karst morphology in the coral reefs of the arid Middle East. Geology 38:227–230

    Article  Google Scholar 

  • Purkis SJ, Klemas V (2011) Global environmental change and remote sensing. Wiley, New York

    Google Scholar 

  • Quadros ND, Collier PA, Fraser CS (2008) Integration of bathymetric and topographic LiDAR: a preliminary investigation. Int Arch Photogrammetry, Remote Sens Spat Inf SciPart B 37:315–320 (Part B1. Beijing)

    Google Scholar 

  • Reuter R, Wang H, Willkomm R, Loquay K, Braun A, Hengstermann T (1995) A laser fluorosensor for maritime surveillance: measurement of oil spills. EARSeL Adv Remote Sens 3:152–169

    Google Scholar 

  • Rogers CS (1990) Responses of coral reefs and reef organisms to sedimentation. Mar Ecol Prog Ser 62:185–202

    Article  Google Scholar 

  • Rohmann SO, Monaco ME (2005) Mapping southern Florida's shallow-water coral ecosystems: an implementation plan, NOAA Technical Memorandum NOS NCCOS 19 (Online)

    Google Scholar 

  • Sale PF (1991) Habitat structure and recruitment in coral reef fishes. In: Bell SS, McCoy ED, Mushinsky HR (eds) Habitat structure: the physical arrangement of objects in space. Chapman and Hall, New York, pp 211–234

    Google Scholar 

  • Sallenger AH, Krabill WB, Brock JC, Swift RN, Jansen M, Manizade S, Richmond B, Hampto M, Eslinger D (1999) Airborne laser study quantifies El Niño-induced coastal change. American Geophysical Union, EOS Transactions 80:89–93

    Google Scholar 

  • Sebens KP (1991) Habitat structure and community dynamics in marine benthic systems. In: Bell SS, McCoy ED, Mushinsky HR (eds) Habitat structure: the physical arrangement of objects in space. Chapman and Hall, New York, pp 211–234

    Chapter  Google Scholar 

  • Sinclair M (1999) Laser hydrography—commercial survey operations. In: Proceedings of US hydrographic conference, Alabama, USA

    Google Scholar 

  • Squire JL Jr, Krumboltz H (1981) Profiling pelagic fish schools using airborne optical lasers and other remote sensing techniques. Mar Technol Soc J 15:27–31

    Google Scholar 

  • Stephenson D, Sinclair M (2006) NOAA LiDAR data acquisition and processing report: Project OPR-I305-KRL-06, NOAA data acquisition and processing report NOS OCS (Online)

    Google Scholar 

  • Storlazzi CD, Logan JB, Field ME (2003) Quantitative morphology of a fringing reef tract from high-resolution laser bathymetry. Geol Soc Am Bull 115:1344–1355

    Article  Google Scholar 

  • Stumpf RP, Holderied K, Sinclair M (2003) Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol Oceanogr 48:547–556

    Article  Google Scholar 

  • Szmant AM (1997) Nutrient effects on coral reefs: a hypothesis on the importance of topographic and trophic complexity to reef nutrient dynamics. In: Proceedings of the 8th international coral reef symposium, Smithsonian Tropical Research Institute, Panama, pp 1527–1532

    Google Scholar 

  • Tuell GH, Feygels VI, Kopilevich YI, Cunningham AG, Weidemann AD, Mani R, Podoba V, Ramnath V, Park JY, Aitken J (2005) Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne LiDAR sysem (SHOALS): II. Practical results and comparison with independent data. In: Proceedings of SPIE, vol 5885

    Google Scholar 

  • Tuell GH, Park JY (2004) Use of SHOALS bottom reflectance images to constrain the inversion of a hyperspectral radiative transfer model. In: Kammerman G (ed) Laser Radar and Technology Applications IX. Proceedings of SPIE, vol 5412, p 185–193

    Google Scholar 

  • Vogelzang J (1997) Mapping submarine sand waves with multiband imaging radar 1. Model development and sensitivity analysis. J Geophys Res 102:1163–1181

    Article  Google Scholar 

  • Wagner W, Ullrich A, Ducic V, Melzer T, Studnicka N (2006) Gaussian decomposition and calibration of a novel small footprint full-waveform digitising airborne laser scanner. ISPRS J Photogrammetry Remote Sens 60:100–112

    Article  Google Scholar 

  • Walker BK, Riegl B, Dodge RE (2008) Mapping coral reef habitats in southeast Florida using a combined technique approach. J Coastal Res 24:1138–1150

    Article  Google Scholar 

  • Wang C-K, Philpot WD (2007) Using airborne bathymetric LiDAR to detect bottom type variation in shallow waters. Remote Sens Environ 106:123–135

    Article  Google Scholar 

  • Wood R (1999) Reef evolution. Oxford University Press, Oxford, p 414

    Google Scholar 

  • Woolard JW, Colby JD (2002) Spatial characterization, resolution, and volumetric change of coastal dunes using airborne LiDAR: Cape Hatteras, North Carolina. Geomorphology 48:269–288

    Article  Google Scholar 

  • Wozencraft JM (2003) SHOALS airborne coastal mapping: past, present and future. J Coastal Res 38:207–216

    Google Scholar 

  • Wright CW, Brock J (2002) EAARL: a LiDAR for mapping shallow coral reefs and other coastal environments. In: Paper in the proceedings of the 7th international conference on remote sensing for marine and coastal environments, Miami, 20–22 May 2002

    Google Scholar 

  • Zawada DG, Brock JC (2009) A multiscale analysis of coral reef topographic complexity using LiDAR-derived bathymetry. J Coastal Res 53:6–15

    Article  Google Scholar 

  • Zieger S, Stieglitz T, Kininmonth S (2009) Mapping reef features from multibeam sonar data using multiscale morphometric analysis. Mar Geol 264:209–217

    Article  Google Scholar 

Download references

Acknowledgments

Sam Purkis was supported by the National Coral Reef Institute, Nova Southeastern University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel J. Purkis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Purkis, S.J., Brock, J.C. (2013). LiDAR Overview. In: Goodman, J., Purkis, S., Phinn, S. (eds) Coral Reef Remote Sensing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9292-2_5

Download citation

Publish with us

Policies and ethics