Skip to main content

Gas-Exchange and Chlorophyll Fluorescence Measurements in Grapevine Leaves in the Field

  • Chapter
  • First Online:

Abstract

The analysis of photosynthetic processes under field conditions, in particular under varying climatic conditions has become an important issue for plant scientists and agronomists. An easy and robust measuring technique is needed to assess the underlying biophysical and biochemical processes of photosynthesis. Advances in analysis of leaf traits, such as photosynthetic activity and limitations, have been made due to improvements of leaf gas exchange analysis and chlorophyll fluorimetry. In this chapter the basics of photo-biochemistry and physics, as well as the fundamental model of photosynthesis by Farquhar et al. are described. Recent methods on how to determine various photosynthetic parameters are discussed, including a section on potential errors and mistakes. Finally, the potential of combined measurements of leaf gas exchange and chlorophyll fluorescence is introduced, emphasizing the importance of limitations of CO2 diffusion across a leaf (“mesophyll conductance”).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AN :

Net CO2 assimilation rate (e.g. mmol CO2 m−2 s−1)

Ca :

Ambient CO2 concentration (e.g. micro mol CO2)

Cc :

CO2 concentration in the chloroplast (e.g. ppm CO2)

Ci :

Leaf internal CO2 concentration, in the substomatal cavities (e.g. ppm CO2)

E :

Leaf transpiration rate (e.g. mol H2O m−2 s−1)

Fm:

Maximum chlorophyll a fluorescence

Fm':

Maximum chlorophyll a fluorescence in the light adapted state

Fs:

Apparent chlorophyll a fluorescence in the light adapted state

Fv:

Variable chlorophyll a fluorescence

Fo:

Basal chlorophyll a fluorescence (in the dark)

Fo':

Basal chlorophyll a fluorescence (after light–dark transition)

ΦPSII :

Apparent efficiency of the PSII photochemistry

gc :

Cuticular conductance for water vapour (or CO2)

gm :

Mesophyll conductance for CO2 (e.g. mol CO2 m−2 s−1)

gs :

Stomatal conductance for water vapour or CO2 (e.g. mol H2O m−2 s−1)

Γ* :

CO2 compensation point between photosynthesis and photorespiration

IRGA:

Infra red gas analyser

J (max) :

(maximum) Photosynthetic electron transport rate

NPQ:

Non-photochemical quenching

PSII:

Photosystem II

qP:

Photochemical quenching

Rd :

Rate of day respiration or respiration in the light (e.g. μmol O2 m−2 s−1)

Rubisco:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

TPU:

Triose-phosphate utilization

V c,max :

Apparent carboxylation rate of rubisco

VPD:

Vapour pressure deficit

References

  • Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR, Jr., Long SP (2001) In vivo temperature response functions for leaf steady-state photosynthesis models. Photosynth Res 69:235

    Google Scholar 

  • Bernacchi CJ, Portis AR, Nakano H, von Caemmerer S, Long SP (2002) Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol 130:1992–1998

    Article  PubMed  CAS  Google Scholar 

  • Bernacchi CJ, Pimentel C, Long SP (2003) In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant Cell Environ 26:1419–1430

    Article  CAS  Google Scholar 

  • Boyer JS, Wong SC, Farquhar GD (1997) CO2 and water vapor exchange across leaf cuticle (epidermis) at various water potentials. Plant Physiol 114:185–191

    PubMed  CAS  Google Scholar 

  • Chaves MM, Harley PC, Tenhunen JD, Lange OL (1987) Gas exchange studies in two grapevine cultivars. Physiol Plant 70:639–647

    Article  Google Scholar 

  • Demmig-Adams B, Adams III WW (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Article  Google Scholar 

  • Downton WJS, Grant WJR, Loveys BR (1987) Diurnal changes in the photosynthesis of field-grown grape vines. New Phytol 105:71–80

    Article  Google Scholar 

  • Downton WJS, Loveys BR, Grant WJR (1988a) stomatal closure fully accounts for the inhibition of photosynthesis by abscisic acid. New Phytol 108:263–266

    Article  CAS  Google Scholar 

  • Downton WJS, Loveys BR, Grant WJR (1988b) non-uniform stomatal closure induced by water stress causes putative non-stomatal inhibition of photosynthesis. New Phytol 110:503–509

    Article  Google Scholar 

  • Epron D, Godard D, Cornic G, Genty B (1995) Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L and Castanea sativa Mill). Plant Cell Environ 18:43–51

    Article  Google Scholar 

  • Escalona JM, Flexas J, Medrano H (1999) Stomatal and non-stomatal limitations of photosynthesis under water stress in field-grown grapevines. Aust J Plant Physiol 26:421–433

    Article  Google Scholar 

  • Ethier GJ, Livingston NJ (2004) On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ 27:137–153

    Article  CAS  Google Scholar 

  • Evans JR, Sharkey TD, Berry JA, Farquhar GD (1986) Carbon isotope discrimination measured concurrently with gas-exchange to investigate CO2 diffusion in leaves of higher-plants. Aust J Plant Physiol 13:281–292

    Article  CAS  Google Scholar 

  • Evans JR, von Caemmerer S (1996) Carbon dioxide diffusion inside leaves. Plant Physiol 110:339–346

    PubMed  CAS  Google Scholar 

  • Farquhar GD, Caemmerer SV, Berry JA (1980) A biochemical-model of photosynthetic CO2 assimilation in leaves of C-3 species. Planta 149:78–90

    Article  CAS  Google Scholar 

  • Flexas J, Escalona JM, Medrano H (1999) Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines. Plant Cell Environ 22:39–48

    Article  Google Scholar 

  • Flexas J, Bota J, Escalona JM, Sampol B, Medrano H (2002) Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Funct Plant Biol 29:461–471

    Article  Google Scholar 

  • Flexas J, Diaz-Espejo A, Berry J, Cifre J, Galmes J, Kaldenhoff R, Medrano H, Ribas-Carbo M (2007) Analysis of leakage in IRGA’s leaf chambers of open gas exchange systems: quantification and its effects in photosynthesis parameterization. J Exp Bot 58:1533–1543

    Article  PubMed  CAS  Google Scholar 

  • Flexas J, Ribas-Carbo M, Diaz-Espejo A, Galmes J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–621

    Article  PubMed  CAS  Google Scholar 

  • Flexas J, Baron M, Bota J, Ducruet J-M, Galle A, Galmes J, Jimenez M, Pou A, Ribas-Carbo M, Sajnani C, Tomas M, Medrano H (2009) Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri x V. rupestris). J Exp Bot 60:2361–2377

    Article  PubMed  CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990:87–92

    Article  CAS  Google Scholar 

  • Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ 28:834–849

    Article  CAS  Google Scholar 

  • Guan XQ, Zhao SJ, Li DQ, Shu HR (2004) Photoprotective function of photorespiration in several grapevine cultivars under drought stress. Photosynthetica 42:31–36

    Article  CAS  Google Scholar 

  • Harley PC, Loreto F, Di Marco G, Sharkey TD (1992) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol 98:1429–1436

    Article  PubMed  CAS  Google Scholar 

  • Hoad SP, Grace J, Jeffree CE (1996) A leaf disc method for measuring cuticular conductance. J Exp Bot 47:431–437

    Article  CAS  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Ann Rev Plant Physiol Plant Mol Biol 47:655–684

    Article  CAS  Google Scholar 

  • Kautsky H, Appel W, Amann H (1960) Chlorophyllfluorescenz und Kohlensaureassimilation .13. Die Fluorescenzkurve und die Photochemie der Pflanze. Biochem Zeitschrift 332:277–292

    CAS  Google Scholar 

  • Krall JP, Edwards GE. 1992. Relationship between photosystem II activity and CO2 fixation in leaves. Physiol Plant 86:180–187

    Article  CAS  Google Scholar 

  • Krause GH, Jahns P (2004) Non-photochemical energy dissipation determined by chlorophyll fluorescence quenching: characterization and function. In: Chlorophyll a fluoerescence: signature of photosynthesis, vol 19. Springer, Dordrecht, pp 463–495

    Google Scholar 

  • Laisk A (1977) Kinetics of photosynthesis and photorespiration in C3 plants. Nauka, Moscow

    Google Scholar 

  • Long SP, Farage PK, Garcia RL (1996) Measurement of leaf and canopy photosynthetic CO2 exchange in the field. J Exp Bot 47:1629–1642

    Article  CAS  Google Scholar 

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54:2393–2401

    Article  PubMed  CAS  Google Scholar 

  • Loreto F, Harley PC, Di Marco G, Sharkey TD (1992) Estimation of mesophyll conductance to CO2 flux by three different methods. Plant Physiol 98:1437–1443

    Article  PubMed  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – A practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • Medrano H, Bota J, Abadía A, Sampol B, Escalona JM, Flexas J (2002) Drought effects on light energy dissipation in high light-acclimated, field-grown grapevines. Funct Plant Biol 29:1197–1207

    Article  CAS  Google Scholar 

  • Medrano H, Escalona JM, Cifre J, Bota J, Flexas J (2003) A ten-year study on the physiology of two Spanish grapevine cultivars under field conditions: effects of water availability from leaf photosynthesis to grape yield and quality. Funct Plant Biol 30:607–619

    Article  CAS  Google Scholar 

  • Meyer S, Genty B (1998) Mapping intercellular CO2 mole fraction (Ci) in Rosa rubiginosa leaves fed with abscisic acid by using chlorophyll fluorescence imaging – Significance of Ci estimated from leaf gas exchange. Plant Physiol 116:947–957

    Article  PubMed  CAS  Google Scholar 

  • Maroco JP, Rodrigues ML, Lopes C, Chaves MM (2002) Limitations to leaf photosynthesis in field-grown grapevine under drought – Metabolic and modelling approaches. Funct Plant Biol 29:451–459

    Article  Google Scholar 

  • Moutinho-Pereira JM, Correia CM, Gonçalves BM, Bacelar EA, Torres-Pereira JM (2004) Leaf gas exchange and water relations of grapevines grown in three different conditions. Photosynthetica 42:81–86

    Article  Google Scholar 

  • Niinemets U, Bilger W, Kull O, Tenhunen JD (1999) Responses of foliar photosynthetic electron transport, pigment stoichiometry, and stomatal conductance to interacting environmental factors in a mixed species forest canopy. Tree Physiol 19:839–852

    Article  PubMed  Google Scholar 

  • Niinemets U, Cescatti A, Rodeghiero M, Tosens T (2005) Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad-leaved species. Plant Cell Environ 28:1552–1566

    Article  Google Scholar 

  • Niinemets U, Diaz-Espejo A, Flexas J, Galmes J, Warren CR (2009a) Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J Exp Bot 60:2249–2270

    Article  PubMed  CAS  Google Scholar 

  • Niinemets U, Diaz-Espejo A, Flexas J, Galmes J, Warren CR (2009b) Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field. J Exp Bot 60:2271–2282

    Article  PubMed  CAS  Google Scholar 

  • Niinemets U, Wright IJ, Evans JR (2009c). Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. J Exp Bot 60:2433–2449

    Article  PubMed  CAS  Google Scholar 

  • Pons TL, Flexas J, von Caemmerer S, Evans JR, Genty B, Ribas-Carbo M, Brugnoli E (2009) Estimating mesophyl conductance to CO2: methodology, potential errors and recommendations. J Exp Bot 60:2217–2234

    Article  PubMed  CAS  Google Scholar 

  • Rodeghiero M, Niinemets U, Cescatti A (2007) Major diffusion leaks of clamp-on leaf cuvettes still unaccounted: how erroneous are the estimates of Farquhar et al. model parameters? Plant Cell Environ 30:1006–1022

    Article  PubMed  CAS  Google Scholar 

  • Sampol B, Bota J, Riera D, Medrano H, Flexas J (2003) Analysis of the virus-induced inhibition of photosynthesis in malmsey grapevines. New Phytol 160:403–412

    Article  CAS  Google Scholar 

  • Santrucek J, Simanova E, Karbulkova J, Simkova M, Schreiber L (2004) A new technique for measurement of water permeability of stomatous cuticular membranes isolated from Hedera helix leaves. J Exp Bot 55:1411–1422

    Article  PubMed  CAS  Google Scholar 

  • Schultz HR (2003) Extension of a Farquhar model for limitations of leaf photosynthesis induced by light environment, phenology and leaf age in grapevines (Vitis vinifera L. cvv. White Riesling and Zinfandel). Funct Plant Biol 30:673–687

    Article  CAS  Google Scholar 

  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C-3 leaves. Plant Cell Environ 30:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Souza CR de, Maroco JP, dos Santos TP, Rodrigues ML, Lopes CM, Pereira JS, Chaves MM (2003) Partial root zone drying: regulation of stomatal aperture and carbon assimilation in field-grown grapevines (Vitis vinifera cv. Moscatel). Funct Plant Biol 30:653–662

    Article  Google Scholar 

  • Szabo I, Bergantino E, Giacometti GM (2005) Light and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo-oxidation. EMBO Reports 6:629–634

    Article  PubMed  CAS  Google Scholar 

  • Valentini R, Epron D, Deangelis P, Matteucci G, Dreyer E (1995) In-situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in turkey oak (Q. cerris L) leaves – Diurnal cycles under different levels of water-supply. Plant Cell Environ 18:631–640

    Article  CAS  Google Scholar 

  • Von Caemmerer S (2000) Biochemical model of leaf photosynthesis. Techniques in plant sciences No. 2. CSIRO Publishing, Collingwood, Victoria, Australia, p 50

    Google Scholar 

  • Warren CR, Dreyer E (2006) Temperature response of photosynthesis and internal conductance to CO2: results from two independent approaches. J Expl Bot 57:3057–3067

    Article  CAS  Google Scholar 

  • Warren CR (2008) Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer. J Exp Bot 59:1475–1487

    Article  PubMed  CAS  Google Scholar 

  • Wilson KB, Baldocchi DD, Hanson PJ (2000) Quantifying stomatal and non-stomatal limitations to carbon assimilation resulting from leaf aging and drought in mature deciduous tree species. Tree Physiol 20:787–797

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge all other relevant studies in the field that could not be included due to limitation of space. A. Gallé benefited from a STSM of the COST 858 programme in 2007. Founding was provided by the Spanish Ministry of Education and Research (BFU2005-03102/BFI and BFU2008-01072/BFI) and the Swiss National Science Foundation (PBBEA-117524).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Gallé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gallé, A., Flexas, J. (2010). Gas-Exchange and Chlorophyll Fluorescence Measurements in Grapevine Leaves in the Field. In: Delrot, S., Medrano, H., Or, E., Bavaresco, L., Grando, S. (eds) Methodologies and Results in Grapevine Research. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9283-0_8

Download citation

Publish with us

Policies and ethics