Skip to main content

Vegetative Growth, Reproductive Development and Vineyard Balance

  • Chapter
  • First Online:
Methodologies and Results in Grapevine Research

Abstract

In the last decades, viticultural research has made important progress due to the implementation of many technical advances to this field. In addition to “classical” viticultural research, it is now possible to analyze vine behaviour with many different approaches, such as plant physiology, genomics, proteomics, precision viticulture and so on. These changes extend our understanding of viticulture, but they may also lead to a certain heterogeneity in the methodology used to estimate the basic characteristics of the vineyards (e.g.: vegetative and reproductive growth). Even worse, measurements of those parameters are sometimes neglected. In order to optimize the relevance and inter-disciplinarity of our work, and its applicability to the vineyard, we should tend toward protocol standardization, the most suitable measurements and ways of expressing results should be determined for each circumstance. This chapter attempts to shed some light on some methodological aspects related to the measurement of vine vegetative and reproductive growth and vineyard balance. We have tried to be comprehensive, but not exhaustive, since some topics are also the subject of other chapters in this book whereas others are beyond its scope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

LAI:

Leaf Area Index

NIR:

Near Infrared

SA:

External leaf area

TCSA:

Trunk cross-sectional area

VPI:

Vineyard Potentiality Index

References

  • Bernard AC (1986) Une approche de la coulure du Grenache. Progrès Agricole et Viticole 103:395–399

    Google Scholar 

  • Bessis R (1960) Deux méthodes rapides d’apreciation du nombre de fleurs dans les grappes de la vigne. Comptes Rendus des Sciences de l’ Academie d’Agriculture de la France 14:823–828

    Google Scholar 

  • Bessis R, Fournioux JC (1992) Zone d’abscission et coloure de la vigne. Vitis 31:9–21

    Google Scholar 

  • Bravdo B, Hepner Y, Loinger C, Cohen S, Tabacman H (1985) Effect of irrigation and crop level on growth, yield and wine quality of Cabernet Sauvignon. Am J Enol Vitic 36:132–139

    CAS  Google Scholar 

  • Buttrose MS (1966) The effect of reducing leaf area on the growth of roots, stems and berries of Gordo grape vines. Vitis 5:455–464

    Google Scholar 

  • Casteran P, Raynier A, Rivet P (1981) Evaluation du nombre de fleurs des bourgeons de quelques cepages de Vitis vinifera L. Progrès Agricole et Viticole 98:595–599

    Google Scholar 

  • Champagnol F (1984) Elements de physiologie de la vigne et de viticulture general. Dehan Imprimerie, Montpelier, France

    Google Scholar 

  • Considine JA (2004) Grapevine productivity and yield components: A case study using field vines of Zante currant. Aust J Grape Wine Res 10:108–115

    Article  Google Scholar 

  • Coombe BG (1973) The regulation of set and development of the grape berry. Acta Horticulturae 34:261–273

    Google Scholar 

  • Chkhartishvili N, Vashakidze L, Gurasashvili V, Maghradze D (2006) Type of pollination and indices of fruit set of some Georgian grapevine varieties. Vitis 45:153–156

    Google Scholar 

  • De la Hera ML, Romero P, Gomez-Plaza E, Martinez A (2007) Is partial root-zone drying an effective irrigation technique to improve water use efficiency and fruit quality in field-grown wine grapes under semiarid conditions? Agric Water Manag 87:261–274

    Article  Google Scholar 

  • Drissi R, Goutouly JP, Forget D, Gaudillere JP (2009) Nondestructive measurement of grapevine leaf area by ground normalized difference vegetation index. Agron J 101:226–231

    Article  Google Scholar 

  • Duchêne E, Meluc D, Panigai L et al. (2001) Élaboration du nombre de baies par m2 pour le Pinot Noir et le Chardonnay in Alsace, Bourgogne and Champagne. J Int Sci Vigne Vin 35:215–224

    Google Scholar 

  • Dunn GM, Martin SR (2000) Do temperature conditions at budburst affect flower number in Vitis vinifera L. cv. ‘Cabernet Sauvignon’? Aust J Grape Wine Res 6:116–124

    Article  Google Scholar 

  • Dunn GM, Martin SR (2007) A functional association in Vitis vinifera L. cv. Cabernet Sauvignon between the extent of primary branching and the number of flowers formed per inflorescence. Aust J Grape Wine Res 13:95–100

    Article  Google Scholar 

  • Folwell RJ, Santos DE, Spayd SE, Porter LH, Wells DS (1994) Statistical technique for forecasting concord grape production. Am J Enol Vitic 45:63–70

    Google Scholar 

  • Hall A, Lamb DW, Holzapfel BP, Louis J (2002) Optimal remote sensing applications in viticulture – a review. Aust J Grape Wine Res 8:36–47

    Article  Google Scholar 

  • Hall A, Louis JP, Lamb DW (2008) Low-resolution remotely sensed images of winegrape vineyards map spatial variability in planimetric canopy area instead of leaf area index. Aust J Grape Wine Res 14:9–17

    Article  Google Scholar 

  • Hidalgo Togores J (2003) Tratado de enología. Mundi-Prensa, Madrid

    Google Scholar 

  • Holzapfel B, Smith J (2007) Carbohydrate reserves at harvest and leaf fall impact on vine productivity in the next season. Bulletin de l’OIV 80:17–29

    CAS  Google Scholar 

  • Huglin P, Balthazard J (1975) Variabilité et fluctuation de la composition des inflorescences et des grappes chez quelques variétés de Vitis vinifera. Vitis 14:6–13

    Google Scholar 

  • Intrieri C, Filippetti I, Allegro G, Centinari M, Poni S (2008) Early defoliation (hand vs mechanical) for improved crop control and grape composition in Sangiovese (Vitis vinifera L.). Aust J Grape Wine Res 14:25–32

    Article  CAS  Google Scholar 

  • Johnson LF, Roczen DE, Youkhana SK, Nemani RR, Bosch DF (2003) Mapping vineyard leaf area with multispectral satellite imagery. Comput Electron Agric 38:33–44

    Article  Google Scholar 

  • Johnson LF, Pierce LL (2004) Indirect measurement of leaf area index in California North Coast vineyards. Hortscience 39:236–238

    Google Scholar 

  • Kliewer WM, Antcliff AJ (1970) Influence of defoliation, leaf darkening, and cluster shading on the growth and composition of Sultana grapes. Am J Enol Vitic 21:26–36

    Google Scholar 

  • Kliewer WM, Dokoozlian NK (2005) Leaf area/crop weight ratios of grapevines: Influence on fruit composition and wine quality. Am J Enol Vitic 56:170–181

    Google Scholar 

  • Lavín A, Gutierrez A, Rojas MS (2001) Niveles de carga en viñedos jóvenes cv. Chardonnay y sus efectos sobre producción y calidad del vino. Agricultura Técnica 61:26–34

    Google Scholar 

  • Maccarrone G, Bogoni M, Scienza A (1996) Assessment of source-sink relationships with simple indices in grapevines. Acta Horticulturae 427:177–186

    Google Scholar 

  • Maigre D. (1996) Comportement viticole et physiologique de la vigne soumise à différents modes d’entretien du sol. Revue Suisse Viticulture, Arboricolture et Horticulture 28:303–312

    Google Scholar 

  • May P (2000) From bud to berry, with special reference to inflorescence and bunch morphology in Vitis vinifera L. Aust J Grape Wine Res 6:82–98

    Article  Google Scholar 

  • May P (2004) Flowering and fruitset in grapevines. Phylloxera and Grape Industry Board of South Australia in association with Lythrum Press, Adelaide

    Google Scholar 

  • Murisier F, Zufferey V (2006) Influences of plantation density and height of foliage on the quality of grapes and wines. Trials using Chasselas a Leytron (VS). Revue Suisse de Viticulture, Arboriculture, Horticulture 38:271–276

    Google Scholar 

  • Murisier F, Zufferey V, Triacca M (2007) Influence of row spacing and hedging height on yield, quality and root development of vines. Revue Suisse de Viticulture, Arboriculture et Horticulture 39:361–364

    Google Scholar 

  • Neter J (1996) Applied linear regression models, 3rd edn. Irwin, Chicago

    Google Scholar 

  • Ollat N, Fermaud M, Tandonnet JP, Neveux M (1998) Evaluation of an indirect method for leaf area index determination in the vineyard: combined effects of cultivar, year and training system. Vitis 37:73–78

    Google Scholar 

  • Proffitt T (2006) Precision viticulture: a new era in vineyard management and wine production. Winetitles. Ashford, South Australia

    Google Scholar 

  • Reynolds AG, Wardle DA, Naylor AP. (1995) Impact of training system and vine spacing on vine performance and berry composition of Chancellor. Am J Enol Vitic 46:88–97

    CAS  Google Scholar 

  • Sánchez-de-Miguel P, Baeza P, Junquera P, Lissarrague JR (2010) Vegetative growth, total leaf area and surface indexes. In: Delrot S, et al. (eds) Methodologies and results in grapevine research. Springer, pp 31–44

    Google Scholar 

  • Santesteban G (2003) Evaluación del efecto del estrés hídrico sobre el crecimiento, la fertilidad y la producción de la vid (Vitis vinifera L.) cv. ‘Tempranillo’. In Dpt Producción Agraria. Universidad Pública de Navarra, Pamplona

    Google Scholar 

  • Santesteban LG, Royo JB (2006) Water status, leaf area and fruit load influence on berry weight and sugar accumulation of cv. ‘Tempranillo’ under semiarid conditions. Scientia Horticulturae 109:60–65

    Article  CAS  Google Scholar 

  • Schneider C (1992) Analyse des composants de la production viticole alsaciane. Recherche d’une méthode fiable de mesure du nombre de fleurs/inflorescences. In: Comptes Rendus 4e Symposium Internationale Physiologie de la Vigne. Turin (Italia): Fondazione Giovanni Dalmaso

    Google Scholar 

  • Scholefield PB, May P, Neales TF (1977) Harvest pruning and trellising of Sultana vines. II. Effects on early spring development. Scientia Horticulturae 7:123–132

    Article  Google Scholar 

  • Smart RE, Robinson M (1991) Sunlight into wine. A handbook for winegrape canopy management. Winetitles, Adelaide, Australia

    Google Scholar 

  • Srinivasan C, Mullins MG (1981) Physiology of flowering in the grapevine – a review. Am J Enol Vitic 32:47–63

    CAS  Google Scholar 

  • Swanepoel JJ, Archer P (1988) The ontogeny and development of Vitis vinifera L. cv. Chenin Blanc inflorescence in relation to phenological stages. Vitis 27:133–141

    Google Scholar 

  • Tardaguila J, de Toda FM (2008) Assessment of Tempranillo grapes quality in the vineyard by Vitur score-sheet. J Int Sci Vigne Vin 42:59–65

    Google Scholar 

  • Vallone RC, Nijensohn L, Cavagnaro JB, Merlo EE, Maffei JA (2004) Validation of a simple biological indicator of plant water status to determine irrigation timing of grapevines (Vitis vinifera, L). Acta Horticulturae 646:77–89

    Google Scholar 

  • Weaver RJ, McCune SB (1960) Effect of overcropping Alicante Bouchet grapevines in relation to carbohydrate nutrition and development of the vine. Proc Am Soc of Hort Sci 75:341–353

    CAS  Google Scholar 

  • Winkler AJ (1930) The relation of number of leaves to quality and size of table grapes. Proc Am Soc Hortl Sci 27:158–160

    Google Scholar 

  • Winkler AJ (1954) Effects of overcropping. Am J Enol Vitic 5:4–12

    Google Scholar 

  • Winkler AJ (1958) The relation of leaf are and climate to vine performance and grape quality. Am J Enol Vitic 9:10–23

    Google Scholar 

  • Yuste J, Asenjo JL, Alburquerque MV, Rubio JA (2005) Relationships among physiology, growth and production as affected by water regime and vine spacing of ‘Tempranillo’ grapevines. Proceedings of the 7th International Symposium on Grapevine Physiology and Biotechnology, pp 343–348

    Google Scholar 

  • Zapata C, Magne C, Brun O et al. (1999) La coulure chez la vigne. Rôle des réserves carbonées et azotées. Le Vigneron Champanois 5:43–54

    Google Scholar 

Download references

Acknowledgments

Some of the results included are part of several research projects funded by Gobierno de Navarra (refs. IIM11879.RI1; PA03029; PA058; PA057), Fundación Fuentes Dutor, Verdtech Nuevo Campo SA and Bodegas Ochoa. Besides, the authors would like to thank the long list of vineyard owners and managers that have gently allowed us prowling around their vineyards, and also to all the students and staff that contributed to this research with their time and effort.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.G. Santesteban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Santesteban, L., Miranda, C., Royo, J. (2010). Vegetative Growth, Reproductive Development and Vineyard Balance. In: Delrot, S., Medrano, H., Or, E., Bavaresco, L., Grando, S. (eds) Methodologies and Results in Grapevine Research. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9283-0_4

Download citation

Publish with us

Policies and ethics