Skip to main content

Isolation and Use of Protoplasts from Grapevine Tissues

  • Chapter
  • First Online:
Methodologies and Results in Grapevine Research

Abstract

Highly pure, intact and functional protoplasts can be obtained from plant tissues, which are readily amenable for challenging with exogenous sugars, acids, analogues, transport inhibitors and drugs. Thus, they may be used as models for both basic research and biotechnological approaches. Some of these studies require the regeneration of plants from protoplasts; however most agronomically important plant species, including grapevine, are recalcitrant to plant regeneration. Oxidative stress has been considered as a crucial factor accounting for the recalcitrance of grapevine protoplasts, as supported by the profiles of generated reactive oxygen species (ROS) and ROS-scavenging enzymes, the modified cell redox state, as well as the altered endogenous titers of polyamine levels. In the present work, methods for the purification of intact and functional protoplasts from grape berry mesocarp tissue and for the isolation and culture of mesophyll protoplasts are described. Methods for the detection of ROS in grapevine protoplasts, together with assays for antioxidant enzyme and antioxidant biomolecules are also detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APO:

Ascorbate peroxidase

BAP:

6-Benzylaminopurine

CAT:

Catalase

cpm:

Counts per minute

DHAR:

Dehydroascorbate reductase

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

FDA:

Fluorescein diacetate

GR:

Glutathione reductase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

H2O2 :

Hydrogen peroxide

MDHAR:

Monodehydroascorbate reductase

MES:

2-(N-morpholino)ethanesulfonic acid

NAA:

1-Naphthaleneacetic acid

O2 .− :

Superoxide radical

PAs:

Polyamines

PCA:

Perchloric acid

PMSF:

Phenylmethanesulfonyl fluoride

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TEMED:

Tetramethylethylenediamine

References

  • Akerboom T, Sies H (1981) Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 77:373–382

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1984) Chloroplasts: formation of active oxygen and its scavenging. Methods Enzymol 105:422–429

    Article  CAS  Google Scholar 

  • Auh CK, Murphy TM (1995) Plasma membrane redox enzyme is involved in the synthesis of O2 .– and H2O2 by Phytophthora elicitor-stimulated rose cells. Plant Physiol 107:1241–1247

    PubMed  CAS  Google Scholar 

  • Barbier M, Bessis R (1988) Effets de differents facteurs contributant a l’amelioration de l’isolement de protoplastes a partir de feuilles de vignes (Vitis vinifera L.). Bull Soc Bot Fr Lett Bot 135:251–261

    Google Scholar 

  • Barbier M, Bessis R (1990) Isolation and culture of grapevine cultivar Chardonnay leaf protoplasts. Euphytica 47:39–44

    Article  Google Scholar 

  • Barnavon L, Doco T, Terrier N, Ageorges A, Romieu C, Pellerin P (2000) Analysis of cell wall neutral sugar composition, β-galactosidase activity and a related c-DNA clone throughout the development of Vitis vinifera grape berries. Plant Physiol. Biochem. 38(4):289–300

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovitch I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Chatfield M, Dalton DA (1993) Ascorbate peroxidase from soybean root nodules. Plant Physiol 103:661–662

    Article  PubMed  CAS  Google Scholar 

  • Cocking EC (1960) A method for the isolation of plant protoplasts and vacuoles. Nature 187:927–929

    Article  Google Scholar 

  • Cocking EC (1961) Properties of isolated protoplasts. Nature 191:780–782.

    Article  Google Scholar 

  • Conde C, Silva P, Fontes N, Dias ACP, Tavares RM, Sousa MJ, Agasse A, Delrot S, Gerós H (2007) Biochemical Changes throughout grape berry development and fruit and wine quality. Food 1:1–22

    Google Scholar 

  • Davey MR, Anthony P, Power JB, Lowe KC (2004) Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 23:131–171

    Article  PubMed  Google Scholar 

  • DeFilippis LF, Ziegler H (1985) The physiology of grapevine (Vitis vinifera) protoplasts isolated from green and senescing leaves. Biochem Physiol Pflanzen 180:645–653

    CAS  Google Scholar 

  • de Marco A, Roubelakis-Angelakis KA (1996a) The complexity of enzymic control of hydrogen peroxide concentration may affect the regeneration potential of plant protoplasts. Plant Physiol 110:137–145

    PubMed  Google Scholar 

  • de Marco A, Roubelakis-Angelakis KA (1996b) Hydrogen peroxide plays a bivalent role in the regeneration of protoplasts. J Plant Physiol 149:109–114

    Article  Google Scholar 

  • Deswarte C, Rouquier P, Roustan JP, Dargent R, Fallot J (1994) Ultrastructural changes produced in plantlet leaves and protoplasts of Vitis vinifera cv Cabernet Sauvignon by eutypine, a toxin from Eutypa lata. Vitis 33:185–188

    CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabelling DNA restriction endonuclease fragments to high specificity. Anal Biochem 132:6–13

    Article  PubMed  CAS  Google Scholar 

  • Fontes N, Delrot S, Gerós H (2009) Method to obtain intact, viable protoplasts from grape berry mesocarp cells and biotechnological applications. Portuguese patent application no 103851

    Google Scholar 

  • Fontes N, Delrot S, Gerós H (2010a) A method for the isolation of protoplasts from grape berry mesocarp tissue. Recent Patents Biotechnol 4:125–129

    Google Scholar 

  • Fontes N, Silva R, Vignault C, Lecourieux F, Gerós H, Delrot S (2010b) Purification and functional characterization of protoplasts and intact vacuoles from grape cells. BMC Res Notes (http://www.biomedcentral.com/1756-0500/3/19).

  • Foyer C, Lelandais M, Galap C, Kunert KJ (1991) Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol 97:863–872

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signalling: a metabolic interfase between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Fuchs Y, Saxena YA, Gamble HR, Anderson JD (1989) Ethylene biosynthesis-inducing protein from cellulisin is an endoxylanase. Plant Physiol 89:138–143

    Article  PubMed  CAS  Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45

    Article  PubMed  CAS  Google Scholar 

  • Jones KH, Senft JA (1985) An improved method to determine cell viability by simultaneous staining with fluorescein diacetate–propidium iodide. J Histochem Cytochem 33:77–79

    Article  PubMed  CAS  Google Scholar 

  • Katsirdakis KC, Roubelakis-Angelakis KA (1992a) A modified culture medium and culture conditions increase viability and cell wall synthesis in grapevine (Vitis vinifera L. cv Sultanina) leaf protoplasts. Plant Cell Tiss Org Cult 28:255–260

    Article  Google Scholar 

  • Katsirdakis KC, Roubelakis-Angelakis KA (1992b) Ultrastructural and biochemical aspects of cell wall regeneration in recalcitrant and regenerating leaf protoplasts. In Vitro Cell Dev Biol 28:90–96

    Article  Google Scholar 

  • Klercker I (1892) Eine methode zur isolierung lebender protoplasten. Ofvers vet-Akad Forhdl. 9:463–474

    Google Scholar 

  • Lee N, Wetzstein HY (1988) Protoplasts isolation and callus production from leaves of tissue-cultured Vitis spp. Plant Cell Rep 7:531–534

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951). Protein measurement with the Folin-Phenol reagents. J. Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Marty F (1999) Plant vacuoles. Plant Cell 11:587–599

    PubMed  CAS  Google Scholar 

  • Mii M, Zou YM, Sugiyama T, Yanagihara S, Iizuka M (1991) Highfrequency callus formation from protoplasts of Vitis labruscana Bailey and Vitis thunbergii Sieb. et Zucc. by embedding in gellan gum. Scientia Hort 46:253–260

    Article  Google Scholar 

  • Misra HP, Fridovich I (1977) Superoxide dismutase: a photochemical augmentation assay. Arch Biochem Biophys 181:308–312

    Article  PubMed  CAS  Google Scholar 

  • Paschalidis KA, Moschou PN, Aziz A, Toumi I, Roubelakis-Angelakis KA (2009) Polyamines in grapevine: an update. In: Roubelakis-Angelakis KA (ed) Grapevine molecular physiology and biotechnology, 2nd edn. DOI 10.1007/978-90-481-2305-6_16. Springer Academic Publishers, Netherlands

    Google Scholar 

  • Murashige I, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murphy TM, Auh CK (1996) The superoxide synthases of plasma membrane preparations from cultured rose cells. Plant Physiol 110:621–629

    PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nishimura M, Hara-Nishimura I, Robinson SP (1984) Isolation of metabolically competent protoplasts from grapevine leaves. Plant Sci Lett 37:171–175

    Article  CAS  Google Scholar 

  • Papadakis AK, Fontes N, Gerós H, Roubelakis-Angelakis KA (2009) Progress in grapevine protoplast technology. In: Roubelakis-Angelakis KA (ed) Grapevine molecular physiology and biotechnology, 2nd edn. DOI 10.1007/978-90-481-2305-6_16. Springer Academic Publishers, Netherlands

    Google Scholar 

  • Papadakis AK, Reustle GM, Roubelakis-Angelakis KA (2001a) Protoplast technology in grapevine. In: Roubelakis-Angelakis KA (ed) Molecular biology and biotechnology of the grapevine. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Papadakis AK, Paschalidis KA, Roubelakis-Angelakis KA (2005) Biosynthesis profile and endogenous titers of polyamines differ in totipotent and recalcitrant plant protoplasts. Physiol Plant 1250:10–20

    Article  Google Scholar 

  • Papadakis AK, Roubelakis-Angelakis KA (1999) The generation of active oxygen species differs in Nicotiana and Vitis plant protoplasts. Plant Physiol 121:197–245

    Article  PubMed  CAS  Google Scholar 

  • Papadakis AK, Siminis CI, Roubelakis-Angelakis KA (2001b) Reduced activity of antioxidant machinery is correlated with suppression of totipotency in plant protoplasts. Plant Physiol 126:434–444

    Article  PubMed  CAS  Google Scholar 

  • Rao M, Hale BA, Ormrod DP (1995) Amelioration of ozone-induced oxidative damage in wheat plants grown under high carbon dioxide. Plant Physiol 109:421–432

    PubMed  CAS  Google Scholar 

  • Reustle G, Alleweldt G (1990) Isolation and culture of grapevine protoplasts. 5th International Symposium on Grape Breeding (Vitis special issue), St. Martin, Germany

    Google Scholar 

  • Reustle G, Alleweldt G (1991) Callus formation from protoplasts of grapevine (Vitis spp). Phys Plant 82:97

    Google Scholar 

  • Reustle G, Harst M, Alleweldt G (1995) Plant regeneration of grapevine (Vitis sp.) protoplasts isolated from embryogenic tissue. Plant Cell Rpts 15:238–241.

    CAS  Google Scholar 

  • Roubelakis-Angelakis KA (1993) An assessment of possible factors contributing to recalcitrance of plant protoplasts. In: Roubelakis-Angelakis KA, Tran Thanh Van K (eds) Morphogenesis in plants: molecular approaches. Plenum, New York

    Google Scholar 

  • Roubelakis-Angelakis KA, Zivanovit SA (1991) A new culture medium for in vitro rhizogenesis of grapevine (Vitis spp.) genotypes. Hort. Sci 26:1551–1553

    Google Scholar 

  • Serrano A, Cordoba F, Gonzales-Reyes JA, Navas P, Villalba JM (1994) Purification and characterization of two distinct NAD(P)H dehydrogenases from onion (Allium cepa L) root plasma membrane. Plant Physiol 106:87–96

    PubMed  CAS  Google Scholar 

  • Skene KGM (1975) Production of callus from protoplasts of cultured grape pericarp. Vitis 14:177–180

    Google Scholar 

  • Taiz L (1992) The Plant Vacuole. J Exp Biol 172:113–122.

    PubMed  CAS  Google Scholar 

  • Theodoropoulos PA, Roubelakis-Angelakis KA (1989) Mechanism of arginine transport in Vitis vinifera L. protoplasts. J Exp Bot 40:1223–1230

    Article  CAS  Google Scholar 

  • Theodoropoulos PA, Roubelakis-Angelakis KA (1990) Progress in leaf protoplast isolation and culture from virus-free axenic shoot cultures of Vitis vinifera L. Plant Cell Tiss Org Cult 20:15–23

    Article  Google Scholar 

  • Theodoropoulos PA, Roubelakis-Angelakis KA (1991) Glucose transport in Vitis vinifera L. protoplasts. J Exp Bot 42:477–483

    Article  CAS  Google Scholar 

  • Tsang EWT, Bowler C, Herouart D, Van Camp W, Villarroel R, Genetello C, Van Montagu M, Inzé D (1991) Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell 3:783–792

    PubMed  CAS  Google Scholar 

  • Ui S, Suzuki M, Kubota S, Masuda H, Muraki H, Yamakawa Y, Sato T (1990) Cooperative effect of activated charcoal and gellun gum on grape protoplast culture. Agric Biol Chem 54:207–209

    Article  CAS  Google Scholar 

  • Visser RGF, Raemakers CJJ, Bergervoet van Deelen JEM (2003) Methods for producing and transforming Cassave protoplasts. United States patent US 6551 827

    Google Scholar 

  • Wang SY, Jiao HJ, Faust M (1991) Changes in ascorbate, glutathione, and related enzyme activities during thiadiazuron-induced bud break of apple. Physiol Plant 82:231–236

    Article  CAS  Google Scholar 

  • Wright DC (1985) Factors affecting isolation of protoplasts from leaves of grape (Vitis vinifera). Plant Cell Tiss Org Cult 4:95–100

    Article  Google Scholar 

  • Zhu YM, Hoshino Y, Nakano M, Takahashi E, Mii M (1997) Highly efficient system of plant regeneration from protoplasts of grapevine (Vitis vinifera L.) through somatic embryogenesis by using embryogenic callus cultures and activated charcoal. Plant Sci 123:151–157

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernâni Gerós .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fontes, N., Gerós, H., Papadakis, A.K., Delrot, S., Roubelakis-Angelakis, K.A. (2010). Isolation and Use of Protoplasts from Grapevine Tissues. In: Delrot, S., Medrano, H., Or, E., Bavaresco, L., Grando, S. (eds) Methodologies and Results in Grapevine Research. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9283-0_18

Download citation

Publish with us

Policies and ethics