Detection and Identification of Weeds

Chapter

Abstract

This chapter reviews the approaches for the automation of weed detection. Site-specific plant protection needs to address the varying weed infestation, but the automation is only partially solved and research is still ongoing. The properties for plant species distinction as well as approaches that use them are presented. The focus is on image based methods, of which an example is given.

Keywords

Weed Species Weed Infestation Grass Weed Curvature Scale Space Vegetation Indexnormalised Difference Vegetation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Andersen HJ, Reng L, Kirk K (2005) Geometric plant properties by relaxed stereo vision using simulated annealing. Comput Electron Agric 49:219–232CrossRefGoogle Scholar
  2. Åstrand B, Baerveldt AJ (2004) Plant recognition and localization using context information. In: Proceedings of the Mechatronics and Robotics 2004 (MechRob2004), Sascha Eysoldt Verlag, Aachen, pp 1191–1196Google Scholar
  3. Backes M, Jacobi J (2006) Classification of weed patches in Quickbird images: verification by ground truth data. EARSeL eProceedings 5:173–179Google Scholar
  4. Backes M, Schumacher D, Plümer L (2005) The sampling problem in weed control. Are currently applied sampling strategies adequate for site-specific weed control. In: Stafford J (ed) Precision agriculture 2005. Wageningen Academic Publishers, Wageningen, pp 155–161Google Scholar
  5. Bakker T, Wouters H, van Asselt K et al (2008) A vision based row detection system for sugar beet. Comput Electron Agric 60:87–95CrossRefGoogle Scholar
  6. Berge T, Aastveit A, Fykse H (2008) Evaluation of an algorithm for automatic detection of broad-leaved weeds in spring cereals. Prec Agric 9:391–405CrossRefGoogle Scholar
  7. Biller RH (1998) Reduced input of herbicides by use of optoelectronic sensors. J Agric Eng Res 71:357–362CrossRefGoogle Scholar
  8. Borregaard T, Nielsen H, Nørgaard L, Have H (2000) Crop-weed discrimination by line imaging spectroscopy. J Agric Eng Res 75:389–400CrossRefGoogle Scholar
  9. Bossu J, Gée C, Jones G, Truchetet F (2009) Wavelet transform to discriminate between crop and weed in perspective agronomic images. Comput Electron Agric 65:133–143CrossRefGoogle Scholar
  10. Brown R, Noble S (2005) Site-specific weed management: sensing requirements – what do we need to see? Weed Sci 53:252–258CrossRefGoogle Scholar
  11. Burgos-Artizzu XP, Ribeiro A, Tellaeche A et al (2009) Improving weed pressure assessment using digital images from an experience-based reasoning approach. Comput Electron Agric 65:176–185, doi:10.1016/j.compag.2008.09.001Google Scholar
  12. Burks T, Shearer S, Heath J, Donohue K (2005) Evaluation of neural-network classifiers for weed species discrimination. Biosyst Eng 91:293–304CrossRefGoogle Scholar
  13. Chapron M, Requena-Esteso M, Boissard P, Assemat L (1999) A method for recognizing vegetal species from multispectral images. In: Stafford J (ed) Precision agriculture 1999. Sheffield Academic Press, Sheffield, pp 239–248Google Scholar
  14. Cho SI, Lee DS, Jeong JY (2002) Weed-plant discrimination by machine vision and artificial neural network. Biosyst Eng 83:275–280CrossRefGoogle Scholar
  15. Dille JA, Mortensen DA, Young LJ (2002) Predicting weed species occurrence based on site properties and previous year’s weed presence. Prec Agric 3:193–207CrossRefGoogle Scholar
  16. van Evert F, Polder G, van der Heijden G et al (2009) Real-time vision-based detection of Rumex obtusifolius in grassland. Weed Res 49:164–174CrossRefGoogle Scholar
  17. Gebhardt S, Kühbauch W (2007a) A new algorithm for automatic Rumex obtusifolius detection in digital images using colour and texture features and the influence of image resolution. Prec Agric 8:1–13CrossRefGoogle Scholar
  18. Gebhardt S, Kühbauch W (2007b) Continous mapping of Rumex obtusifolius during different grassland growths based on automatic image classification and GIS-based post processing. In: Stafford J (ed) Precision agriculture ’07, 6th European Conference on Precision Agriculture (ECPA), Wageningen Academic Publishers, Wageningen, pp 499–506Google Scholar
  19. Gerhards R, Christensen S (2003) Real-time weed detection, decision making and patch spraying in maize, sugar beet, winter wheat and winter barley. Weed Res 43:385–392CrossRefGoogle Scholar
  20. Girma K, Mosali J, Raun WR et al (2005) Identification of optical spectral signatures for detecting cheat and ryegrass in winter wheat. Crop Sci 45:477–485CrossRefGoogle Scholar
  21. Godwin R, Miller P (2003) A review of the technologies for mapping within-field variability. Biosyst Eng 84:393–407CrossRefGoogle Scholar
  22. Gorretta N, Fiorio C, Rabatel G, Marchant J (2005) Cabbage/weed discrimination with a region/contour based segmentation approach for multispectral images. In: Bellon Maurel V, Carbonneau A, Regnard JL et al (eds) Information and technology for sustainable fruit and vegetable production. Production, Proceedings of FRUTIC’05, AgroM ENSA Montpellier; Cemagref Montpellier; CIRAD; INRA, Cemagref, Montpellier France, pp 371–380, 7th Fruit nut and vegetable production engineering symposium, 12–16 Sep 2005Google Scholar
  23. Guyot G, Baret F, Jacquemoud S (1992) Imaging spectroscopy for vegetation studies. In: Toselli F, Bodechtel J (eds) Spectroscopy: fundamentals and prospective applications. Kluwer Academic Publishers, Dordrecht, pp 145–165Google Scholar
  24. Haboudane D, Miller JR, Pattey E et al (2004) Hyperspectral vegetation indices and novel algorithms for predicting green lai of crop canopies: modeling and validation in the context of precision agriculture. Rem Sens Environ 90:337–352CrossRefGoogle Scholar
  25. Hamouz P, Novakova K, Soukup J, Tyser L (2006) Evaluation of sampling and interpolation methods used for weed mapping. J Plant Dis Prot XX (special issue):205–215Google Scholar
  26. Heijting S, van der Werf W, Stein A, Kropff MJ (2007) Are weed patches stable in location? Application of an explicitly two-dimensional methodology. Weed Res 47:381–395CrossRefGoogle Scholar
  27. Hemming J, Rath T (2001) Computer-vision-based weed identification under field conditions using controlled lighting. J Agric Eng Res 78:233–243CrossRefGoogle Scholar
  28. Hu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 8:179–187Google Scholar
  29. Ishak AJ, Hussain A, Mustafa MM (2009) Weed image classification using gabor wavelet and gradient field distribution. Comput Electron Agric 66:53–61CrossRefGoogle Scholar
  30. Jähne B (2001) Digital image processing, 5th edn. Springer, BerlinGoogle Scholar
  31. Jones G, Gée C, Truchetet F (2007) Simulation of perspective agronomic images for weed detection. In: Stafford J (ed) Precision agriculture ’07, 6th European Conference on Precision Agriculture (ECPA), Wageningen Academic Publishers, Wageningen, pp 507–515Google Scholar
  32. Keränen M, Aro EM, Tyystjärvi E, Nevalainen O (2003) Automatic plant identification with chlorophyll fluorescence fingerprinting. Prec Agric 4:53–67CrossRefGoogle Scholar
  33. Klose R, Thiel M, Ruckelshausen A, Marquering J (2008) Weedy – a sensor fusion based autonomous field robot for selective weed control. In: VDI (ed) Land technik 2008. VDI Verlag, Stuttgart, pp 167–172Google Scholar
  34. Lamb D, Brown R (2001) Remote-sensing and mapping of weeds in crops. J Agric Eng Res 78:117–125CrossRefGoogle Scholar
  35. Langner HR, Böttger H, Schmidt H (2006) A special vegetation index for the weed detection in sensor based precision agriculture. Environ Monit Assessm 117:505–518CrossRefGoogle Scholar
  36. López-Granados F, Jurado-Expósito M, Peña-Barragán JM, García-Torres L (2006) Using remote sensing for identification of late-season grass weed patches in wheat. Weed Sci 54:346–353Google Scholar
  37. Manh A, Rabatel G, Assemat L, Aldon M (2001) Weed leaf image segmentation by deformable templates. J Agric Eng Res 80:139–146CrossRefGoogle Scholar
  38. Meyer GE, Neto JC (2008) Verification of color vegetation indices for automated crop imaging applications. Comput Electron Agric 63:282–293CrossRefGoogle Scholar
  39. Mokhtarian F, Abbasi S, Kittler J (1996) Robust and efficient shape indexing through curvature scale space. In: Pycock D (ed) Proceedings of the British Machine Vision Conference 1996, BMVC, British Machine Vision Association, Edinburgh, pp 53–62Google Scholar
  40. Mortensen DA (2002) Crop/weed outcomes from site-specific and uniform soil-applied herbicide applications. Prec Agric 3:95CrossRefGoogle Scholar
  41. Neto JC, Meyer GE, Jones DD (2006a) Individual leaf extractions from young canopy images using Gustafson-Kessel clustering and a genetic algorithm. Comput Electron Agric 51: 66–85CrossRefGoogle Scholar
  42. Neto JC, Meyer GE, Jones DD, Samal AK (2006b) Plant species identification using elliptic fourier leaf shape analysis. Comput Electron Agric 50:121–134CrossRefGoogle Scholar
  43. Oebel H (2006) Teilschlagspezifische Unkrautbekämpfung durch raumbezogene Bildverarbeitung im Offline- und (Online-) Verfahren (TURBO). PhD thesis, Universität Hohenheim, Fakultät AgrarwissenschaftenGoogle Scholar
  44. Oebel H, Gerhards R (2005) Site-specific weed control using digital image analysis and georeferenced application maps – first on-farm experiences. In: Stafford JV (ed) 5th ECPA, Uppsala, Wageningen Academic Publishers, Wageningen, pp 131–138Google Scholar
  45. Okamoto H, Murata T, Kataoka T, Hata SI (2007) Plant classification for weed detection using hyperspectral imaging with wavelet analysis. Weed Biol Manag 7:31–37CrossRefGoogle Scholar
  46. Paap A, Askraba S, Alameh K, Rowe J (2008) Photonic-based spectral reflectance sensor for ground-based plant detection and weed discrimination. Opt Express 16:1051–1055PubMedCrossRefGoogle Scholar
  47. Pérez A, López F, Benlloch J, Christensen S (2000) Colour and shape analysis techniques for weed detection in cereal fields. Comput Electron Agric 25:197–212CrossRefGoogle Scholar
  48. Piron A, Leemans V, Kleynen O et al (2008) Selection of the most efficient wavelength bands for discriminating weeds from crop. Comput Electron Agric 62:141–148CrossRefGoogle Scholar
  49. Piron A, Leemans V, Lebeau F, Destain M (2009) Improving in-row weed detection in multispectral stereoscopic images. Comput Electron Agric 69:73–79, doi: 10.1016/j.compag.2009.07.001Google Scholar
  50. Rasmussen J, Nørremark M, Bibby B (2007) Assessment of leaf cover and crop soil cover in weed harrowing research using digital images. Weed Res 47:299–310CrossRefGoogle Scholar
  51. Reyniers M, Vrindts E, De Baerdemaeker J (2006) Comparison of an aerial-based system and an on the ground continuous measuring device to predict yield of winter wheat. Eur J Agron 24:87–94CrossRefGoogle Scholar
  52. Shafri HZM, Salleh MAM, Ghiyamat A (2006) Hyperspectral remote sensing of vegetation using red edge position techniques. Am J Appl Sci 3:1864–1871CrossRefGoogle Scholar
  53. Slaughter DC, Giles DK, Downey D (2008) Autonomous robotic weed control systems: a review. Comput Electron Agric 61:63–78CrossRefGoogle Scholar
  54. Søgaard H, Heisel T (2002) Machine vision identification of weed species based on active shape models. In: van Laar HH, Bastiaans L, Baumann DT et al (eds) EWRS 12th EWRS Symposium, European Weed Research Society. Grafisch Service Centrum Van Gils BV, Wageningen, pp 402–403Google Scholar
  55. Soille P (2003) Morphological image analysis, 2nd edn. Springer, HeidelbergGoogle Scholar
  56. Sui R, Thomasson JA, Hanks J, Wooten J (2008) Ground-based sensing system for weed mapping in cotton. Comput Electron Agric 60:31–38CrossRefGoogle Scholar
  57. Thorp K, Tian L (2004) A review on remote sensing of weeds in agriculture. Prec Agric 5:477–508CrossRefGoogle Scholar
  58. Šeatović D (2008) A segmentation approach in novel real time 3D plant recognition system. In: Proceedings of the Computer Vision Systems, Lecture Notes in Computer Science, vol 5008. Springer, Berlin/Heidelberg, pp 363–372Google Scholar
  59. Wang N, Zhang N, Dowell FE, Sun Y, Peterson DE (2001) Design of an optical weed sensor using plant spectral characteristics. In: ASAE (ed) Transactions of the ASAE, vol 44. American Society of Agricultural Engineers, St. Joseph, pp 409–419Google Scholar
  60. Weis M, Gerhards R (2007) Feature extraction for the identification of weed species in digital images for the purpose of site-specific weed control. In: Stafford J (ed) Precision agriculture ’07, 6th European Conference on Precision Agriculture (ECPA). Wageningen Academic Publishers, Wageningen, pp 537–545Google Scholar
  61. Woebbecke D, Meyer G, von Bargen K, Mortensen D (1995) Color indices for weed identification under various soil, residue and lighting conditions. American Society of Agricultural Engineers, St. Joseph, pp 259–269Google Scholar
  62. Zhang D, Lu G (2004) Review of shape representation and description techniques. Pattern Recognit 37:1–19CrossRefGoogle Scholar
  63. Zwiggelaar R (1998) A review of spectral properties of plants and their potential use for crop/weed discrimination. Crop Prot 17:189–206CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V.  2010

Authors and Affiliations

  1. 1.Department of Weed ScienceInstitute for Phytomedicine, University of HohenheimStuttgartGermany

Personalised recommendations