Advertisement

Variable Rate Technology for Herbicide Application

  • Markus Sökefeld
Chapter

Abstract

Variable rate technology (VRT ) is used for the application of various agricultural inputs in order to respond adequately to the within-field variability of environmental factors like soil properties, incidence of pests and crop parameters. The areas in plant production in which VRTs are used are highlighted. For the variable rate application of herbicides commercial as well as research solutions are described. The use of VRT for herbicide treatment with regard to pre-emergence and post-emergence applications and the requirements are described. The potential of further herbicides savings due to an additional variation of herbicidal ingredients in consideration of herbicide sensitivity of single weed species and groups of weed species, respectively is shown and evaluated.

Keywords

Weed Species Application Herbicide Weed Infestation Weed Density Variable Rate Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Barnhisel RI, Bitzer MJ, Grove JH, Shearer SA (1997) Agronomic benefits of varying corn seed populations: a central Kentucky study. In: Proceedings site-specific management for Agriculture systems. Third International Conference. American Society of Agronomy, Madison, pp 957–966Google Scholar
  2. Bitzer MJ, Barnhisel RI, Grove, JH (1996) Varying corn populations according to depth of top soil. Proceedings of the 1996 information Agriculture Conference, UrbanaGoogle Scholar
  3. Blumhorst MR, Weber JB, Swain LR (1990) Efficacy of selected herbicides as influenced by soil properties. Weed Technol 4:279–283Google Scholar
  4. Brown RB, Steckler J-PGA, Anderson GW (1994) Remote sensing for identification of weeds in no-till corn. Trans ASAE 37:297–302Google Scholar
  5. Bui QD (2005) VariTarget-A new nozzle with variable flow rate and droplet optimization. ASAE paper no 051125. TampaGoogle Scholar
  6. Christensen S (1994) Crop weed competition and herbicide performance in cereal varieties and species. Weed Res 34:29–37CrossRefGoogle Scholar
  7. Christensen S, Heisel T (1998) Patch spraying using historical, manual and real-time monitoring of weeds in cereals. J Plant Dis Protect XVI (special issue): 257–263Google Scholar
  8. Dammer KH, Ehlert D (2006) Variable-rate fungicide spraying in cereals using plant cover sensor. Prec Agric 7:137–148CrossRefGoogle Scholar
  9. Dieleman JA, Mortensen, DA (1998) Influence of weed biology and ecology on development of reduced dose strategies for integrated weed management systems. In: Hatfield JL, Buhler DD, Stewart BA (eds) Integrated weed and soil management. Ann Arbor Press, Inc, Chelsea, pp 333–362Google Scholar
  10. Dogan MN, Hurle K (1998) Einfluss des Entwicklungsstadiums und von Umweltfaktoren auf die Wirksamkeit reduzierter Aufwandmengen von Tribenuron-methyl (Pointer) auf Chenopodium album L. Z PflKrankh PflSchutz XVI (Sdh), pp 673–679Google Scholar
  11. Ehlert D (2000) Pflanzenmasseerfassung mit mechanischen Sensoren. In: VDI-MEG-Tagung Landtechnik, 10./11.10.2000, Braunschweig, pp 289–294Google Scholar
  12. Ehlert D, Schmerler J, Völker U (2004) Variable rate nitrogen fertilization of winter wheat based on a crop density sensor. Prec Agric 5:263–273CrossRefGoogle Scholar
  13. Gerhards R, Christensen S (2003) Real time weed detection, decision making and patch spraying in maize, sugar beet, winter wheat and winter barley. Weed Res 43:385–392CrossRefGoogle Scholar
  14. Gerhards R, Oebel H (2006) Practical experiences with a system for site-specific weed control in arable crops using real-time image analysis and GPS-controlled patch spraying. Weed Res 46:185–193CrossRefGoogle Scholar
  15. Gerhards R, Sökefeld M (2003) Precision farming in weed control – system components and economic benefits. In Stafford J, Werner A (eds) Precision agriculture, Wageningen Academic Publishers, Wageningen, pp 229–234Google Scholar
  16. Gerhards R, Sökefeld M (2001) Sensor systems for automatic weed detection. Proceedings of the BCPC Conference – Weeds, pp 827–834Google Scholar
  17. Gerhards R, Sökefeld M, Timmermann C et al (1999) Results of a four year study on site-specific herbicide application. In Stafford JV (ed) Precision agriculture ’99, Vol 2. Sheffield Academic, Sheffield, pp 689–697Google Scholar
  18. Gerhards R, Sökefeld M, Timmermann C et al (2002) Site-specific weed control in maize, sugar beet, winter wheat and winter barley. Prec Agric 3:25–35CrossRefGoogle Scholar
  19. Gerhards R, Wyse-Pester DY, Mortensen DA (1997) Characterizing spatial stability of weed populations using interpolated maps. Weed Sci 45:108–119Google Scholar
  20. Giles DK, Henderson GW, Funk K (1996) Digital control of flow rate and spray droplet size from agricultural nozzles for precision chemical application. In: Robert PC et al (eds) Proceedings of the 3rd International Conference on Precision Agriculture, Madison, pp 729–738Google Scholar
  21. GopalaPillai S, Tian L, Zheng J (1999) Evaluation of a flow control system for site-specific herbicide applications. Trans ASAE 42:863–870Google Scholar
  22. Heisel T, Christensen S, Walter AM (1999) Whole-field experiments with site-specific weed management. In: Stafford JV (ed) Precision agriculture ’99, Vol 2. Sheffield Academic, Sheffield, pp 759–768Google Scholar
  23. Jensen PK, Kudsk P (1988) Prediction of herbicide activity. Weed Res 28:473–478CrossRefGoogle Scholar
  24. Jurado-Expósito M, López-Granados F, González-Andújar JL, Garcia-Torres L (2004) Spatial and temporal analysis of Convolvulus arvensis L. populations over four growing seasons. Eur J Agron 21:287–296CrossRefGoogle Scholar
  25. Kitchen NR, Sudduth KA, Drummond ST (1999) Soil electrical conductivity as a crop productivity measure for claypan soils. J Prod Agric 12:607–617Google Scholar
  26. Koller M, Lanini WT (2005) Site-specific herbicide applications based on weed maps provide effective control. Cali Agric 59:182–187CrossRefGoogle Scholar
  27. Kudsk P (1989) Experiences with reduced herbicide doses in Denmark and the development of the concept of factor-adjusted doses. Proceedings of the BCPC Conference, Weeds, pp 545–554Google Scholar
  28. Link A, Panitzki M, Reusch S (2002) Hydro N-Sensor: tractor mounted sensing for variable N fertilization. Proceedings of the 6th International Conference on Precision Agriculture, pp 1012–1018Google Scholar
  29. Maguire S, Earl R, Smith DF, Cripsey P, Godwin RJ (2003) Technology for variable rate precision drilling of onions. In: Stafford J, Werner A (eds) Precision agriculture. Wageningen Academic Publishers, Wageningen, pp 373–378Google Scholar
  30. Marshall EJP (1988) Field-scale estimates of grass populations in arable land. Weed Res 28: 191–198CrossRefGoogle Scholar
  31. Mohammadzamani D, Minaei S, Alimardani R et al (2009) Variable rate herbicide application using the global positioning system for generating a digital management map. Int J Agric Biol 11:178–182Google Scholar
  32. Mortensen DA, Dieleman JA, Johnson GA (1998) Weed spatial variation and weed management. In: Hatfield JL, Buhler DD, Stewart BA (eds) Integrated weed and soil management. Ann Arbor Press, Inc, Chelsea, pp 293–309Google Scholar
  33. Perry C, Pocknee S, Hansen O (2003) A variable rate pivot irrigation control system. In: Stafford J, Werner A (eds) Precision agriculture. Wageningen Academics Publishers, Wageningen, pp 539–544Google Scholar
  34. Schächtl J, Huber G, Maidl FX, Sticksel E (2005) Laser-induced chlorophyll fluorescence measurements for detecting the nitrogen status of wheat (Triticum aestivum L.) canopies. Prec Agric 6:143–156CrossRefGoogle Scholar
  35. Stone ML, Giles DK, Dieball KJ (1999) Distributed network system for control of sprayer droplet size at and application rate for precision chemical application. ASAE Paper No 99-3112, St. JosephGoogle Scholar
  36. Volk T, Leithold P (2006) Site-specific application of growth regulators in winter wheat with the yara N-sensor and proplant decision support system for growth regulators. Mitt Biol Bundesanst Land- und Forstwirtsch 400, p 68Google Scholar
  37. Walker JT, Bansal RK (1999) Development and characterization of variable orifice nozzles for spraying agro-chemicals. ASAE Paper No 99-1008. St. JosephGoogle Scholar
  38. Walter AM, Christensen S, Heisel T (1997) Patch spraying using weed maps from previous years. Proceedings of the 10th EWRS (Eur Weed Res Soc) Symposium 1997, Poznan, p 141Google Scholar
  39. Wartenberg G, Dammer KH (2002) Erfahrungen bei der Verfahrensentwicklung zur teilschlagspezifischen Herbizidanwendung in Echtzeit. Z PflKrankh PflSchutz XVIII (Sdh):443–450Google Scholar
  40. Weber JB, Tucker MR, Isaac RA (1987) Making herbicide rate recommendations based on soil tests. Weed Technol 1:41–45Google Scholar
  41. Weis M, Gerhards R (2007) Feature extraction for the identification of weed species in digital images for the purpose of site-specific weed control. In: JV Stafford (ed) Precision agriculture ’07, Proceedings of the 6th european conference on Precision Agriculture, Wageningen Academic Publishers, Wageningen, pp 537–544Google Scholar
  42. Western NM, Hislop EC, Herrington PJ, Jones EI (1989) Comparative drift measurements for BCPC reference hydraulic nozzles and for an Airtec Twin–Fluid nozzle under controlled conditions. Proceedings of the BCPC Conference, Weeds, pp 641–648Google Scholar
  43. Williams MM, Mortensen DA, Waltman WJ, Martin AR (2002) Spatial inference of herbicide bioavailability using a geographic information system. Weed Technol 16:603–611CrossRefGoogle Scholar
  44. Wilson BJ., Brain P (1991) Long-term stability of distribution of Alopecurus myosuroides Huds. within cereal fields. Weed Res 31:367–373CrossRefGoogle Scholar
  45. Wollenhaupt NC, Wolkowski RP, Clayton MK (1994) Mapping soil test phosphorus and potassium for variable-rate fertilizer application. J Prod Agric 7:441–448Google Scholar
  46. Wyse-Pester DY, Mortensen DA, Gotway CA (1995) Statistical methods to quantify spatial stability of weed population. Proc North Cent Weed Control Conf 50:512Google Scholar

Copyright information

© Springer Science+Business Media B.V.  2010

Authors and Affiliations

  1. 1.Department of Weed ScienceInstitute for Phytomedicine, University of HohenheimStuttgartGermany

Personalised recommendations