Skip to main content

Abstract

Advances in automation are demanded by the market mainly as a response to high labor costs. Robotic outdoor systems are ready to allow not only economically viable operations but also increased efficiency in agriculture, horticulture and forestry. The aim of this chapter is to give examples of autonomous operations related to crop protection probably commercially available in the near future. Scouting and monitoring together with the efficient application of chemicals or mechanical treatments are operations which can be successful automated. Drawbacks are that current systems are lacking robust and safe behaviors. In general the potential of saving e.g. of herbicides are huge when high precision targeting based on individual weed plant detections is used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Astrand B, Baerveldt AJ (2002) An agricultural mobile robot with vision-based perception for mechanical weed control. Auton Robots 13:21–25

    Article  Google Scholar 

  • Astrand B, Baerveldt AJ (2005) A vision based row-following system for agricultural field machinery. Mechatronics 15:251–269

    Article  Google Scholar 

  • Bak T, Jakobsen H. (2004) Agricultural robotic platform with four wheel steering for weed detection. Biosys Eng 87:125–136

    Article  Google Scholar 

  • Blackmore BS, Griepentrog HW, Fountas S, Gemtos T (2007) A specification for an autonomous crop production mechanization system. Agricultural Engineering International: CIGR Ejournal. Manuscript PM 06 032. vol. IX. April

    Google Scholar 

  • Blackmore BS, Griepentrog HW, Nielsen H et al (2004) Development of a deterministic autonomous tractor. Proceeding CIGR, Bejing , 11 November 2004

    Google Scholar 

  • Christensen S, Heisel T, Walter AM, Graglia E (2003) A decision algorithm for patch spraying. Weed Res 43:276–284

    Article  Google Scholar 

  • Christensen S, Sogaard HT, Kudsk P et al (2009) Site-specific weed control technologies. Weed Res 49:233–241

    Article  Google Scholar 

  • Dijksterhuis HL, Van Willigenburg LG, Van Zuydam RP (1998) Centimetre-precision guidance of moving implements in the open field: a simulation based on GPS measurements. Comput Electron Agric 20:185–197

    Article  Google Scholar 

  • Downey D, Giles D, Slaughter DC (2003) Ground based vision identification for weed mapping using DGPS. Proceedings ASAE annual international meeting Las Vegas, Nevada, ASAE, paper no. 03-1005

    Google Scholar 

  • Fender F, Hanneken M, In der Stroth S et al (2006) Sensor fusion meets GPS – Individual plant detection. Proceedings CIGR EurAgEng/VDI-MEG, pp 279–280

    Google Scholar 

  • Garcia-Alegre MC, Ribeiro A, Garcia-Perez L et al (2001) Autonomous robot in agricultural tasks. In: Grenier G, Blackmore BS (eds) Proceedings of the 3rd european conference on precision agriculture ECPA, Montpellier, 18 June 2001

    Google Scholar 

  • Gerhards R, Oebel H (2006) Practical experiences with a system for site specific weed control in arable crops using real-time image analysis and GPS-controlled patch spraying. Weed Res 46:185–193

    Article  Google Scholar 

  • Giles DK, Downey D, Slaughter DC et al (2004) Herbicide micro-dosing for weed control in field-grown processing tomatoes. Appl Eng Agr 20:735–743

    Google Scholar 

  • Graglia E (2004) Importance of herbicide concentration, number of droplets and droplet size on growth of Solanum nigrum L, using droplet application of glyphosate. Proceedings XIIème Colloque International sur la Biologie des Mauvaises Herbes, Dijon, 31 August–2 September 2004

    Google Scholar 

  • Granot R (2002) Architecture for human supervised autonomously controlled off-road equipment. In: Proceedings automation technology for off-road equipment (ATOE), Chicago; ASAE, St. Joseph, 26 July 2002, pp 24–32

    Google Scholar 

  • Griepentrog HW, Blackmore BS (2007) Autonomous crop establishment and control system. In: Proceedings land-technik engineering the future (AgEng 2007) – Engineering solutions for energy and food production, Hanover; VDI-Verlag, Duesseldorf, 9 November 2007, pp 175–181

    Google Scholar 

  • Griepentrog HW, Norremark M, Nielsen H, Blackmore BS (2005) Seed mapping of sugar beet. Prec Agric 6:157–165

    Article  Google Scholar 

  • Grift TE, Zhang Q, Kondo N, Ting KC (2008) Review of automation and robotics for the bio-industry. J Biomechatr Eng 1:37–54

    Google Scholar 

  • Home M. (2003) An investigation into the design of cultivation systems for inter- and intra-row weed control. Unpublished PhD thesis. Cranfield University, National Soil Resources Institute, Engineering Group, Silsoe

    Google Scholar 

  • Iida M, Donghyeon Kang D (2008) Localization of CO2 source by a hexapod robot equipped with an anemoscope and a gas sensor. Comput Electron Agric 63:73–80

    Article  Google Scholar 

  • Jensen PK, Spliid NH (2003) Deposition of pesticides on the soil surface. Pesticides Research, 65. Danish Environmental Protection Agency, 59 pp

    Google Scholar 

  • Jorgensen RN, Sørensen CG, Pedersen JM et al (2007a) Hortibot – A system design of a robotic tool carrier for high-tech plant nursing. CIGR E-J AE Sci Resand Dev IX:13 pp

    Google Scholar 

  • Jorgensen RN, Sorensen CG, Sogaard HT et al (2007b) Methodology for a labour extensive and semi-automated field trial design using autoguidance and conventional machinery. In: Stafford JV (ed) Proceedings of the 6th european conference on precision agriculture (ECPA), Skiathos, Greece, Wageningen Press, Wageningen, pp 441–448

    Google Scholar 

  • Klose R, Ruckelshausen A, Thiel M, Marquering J (2008) Weedy – a sensor fusion based autonomous field robot for selective weed control. Proceedings of the 66th International Conference Agricultural Engineering/AgEng, pp 167–172

    Google Scholar 

  • Krutz GW (1984) Future use of robots in agriculture. Proceedings of the 1st international conference on robotics and intelligent machines in agriculture, pp 15–29

    Google Scholar 

  • Laber H (1999) Effizienz mechanischer Unkrautregulationsmaßnahmen im Freilandgemüsebau. Unpublished PhD thesis, University of Hanover, Faculty of Horticulture, Hanover

    Google Scholar 

  • Lee WS, Slaughter DC, Giles DK (1999) Robotic weed control system for tomatoes. Prec Agric 1:95–113

    Article  Google Scholar 

  • Lund I, Christensen S, Jensen LA et al (2008) Cellesprøjtning af ukrudt i majs (Cell spraying of weeds in maize) Bekæmpelsesmiddelforskning fra Miljøstyrelsen. Nr. 123, 90 pp

    Google Scholar 

  • Mathiassen SK, Kudsk P, Lund I (2008) Adjuvants for single droplet application of glyphosate. Proceedings of the 5th international weed science congress, Vancouver

    Google Scholar 

  • Meier U, Bleiholder H (2007) The BBCH scale – codification and description of phenological growth stages of plants and their international use in agricultural research. Proceedings of the international symposium agricultural field trials – Today and tomorrow, Stuttgart-Hohenheim, 08–10 October 2007, pp 122–125

    Google Scholar 

  • Mitchell HB (2007) Multi-sensor data fusion. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Nagasaka Y, Zhang Q, Kanetani Y, Umeda N (2004) An autonomous field watching-dog robot for information collection in agricultural fields. Proc ASAE Annual Meeting, Ottawa, August 2004, paper no 043091

    Google Scholar 

  • Noack PO, Muhr T, Demmel M (2006) GIS and GPS systems enhancing plot parcel creation. In: Proceedings of the Automation Technology for Off-Road Equipment (ATOE), Bonn, 9 September, pp 139–144

    Google Scholar 

  • Pilarski T, Happold M, Pangels H et al (2002) The demeter system for automated harvesting. Autonomous Robots 13:9–20

    Article  Google Scholar 

  • Ruckelshausen A (2007) Autonomous robots in agricultural field trials. Proceedings of the international symposium agricultural field trials – Today and tomorrow, Stuttgart-Hohenheim, pp 190–197

    Google Scholar 

  • Ruckelshausen A, Biber P, Dorna M et al (2009) BoniRob – an autonomous field robot platform for individual plant phenotyping. Proceedings of the european conference on precision agriculture (ECPA), Wageningen

    Google Scholar 

  • Ruckelshausen A, Dzinaj T, Gelze F et al (1999) Microcontroller-based multisensor system for online crop/weed detection. Proceedins of the Brighton conference, 2, pp 601–606

    Google Scholar 

  • Siciliano B, Khatib O (2008) Springer handbook of robotics. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Sogaard HT, Lund I (2007) Application accuracy of a machine vision-controlled robotic micro-dosing system. Biosys Eng 96:315–322

    Article  Google Scholar 

  • Soerensen CG, Norremark M, Jorgensen RN et al (2007) Hortibot – Feasibility study of a plant nursing robot performing weeding operations – part IV. Proceedings of the ASABE annual international meeting, Minneapolis, 17 June 2007

    Google Scholar 

  • Sogaard HT, Olsen HJ (2003) Determination of crop rows by image analysis without segmentation. Comput Electron Agric 38:141–158

    Article  Google Scholar 

  • Thomas E (2006) Feldversuchswesen. Verlag Eugen Ulmer, Stuttgart

    Google Scholar 

  • Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT Press, Cambridge

    Google Scholar 

  • Tillett ND (1991) Automatic guidance sensors for agricultural field machines – a review. J Agric Eng Res 50:167–187

    Article  Google Scholar 

  • Tillett ND, Hague T, Miles SJ (2002) Inter-row vision guidance for mechanical weed control in sugar beet. Comput Electron Agric 33:163–177

    Article  Google Scholar 

  • van Evert F, van der Heijden G, Lotz L et al (2007) A mobile field robot with vision-based detection of volunteer potato plants in a corn crop. Weed Technol 20:853–861

    Article  Google Scholar 

  • Van Zuydam RP, Sonneveld C, Naber H (1995) Weed control in sugar beet by precision guided implements. Crop Prot 14:335–340

    Article  Google Scholar 

  • Zeitzew MA (2007) Autonomous utility mower. Agricultural engineering international - The CIGR Ejournal IX (July)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans W. Griepentrog .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Griepentrog, H.W., Ruckelshausen, A., Jørgensen, R.N., Lund, I. (2010). Autonomous Systems for Plant Protection. In: Oerke, EC., Gerhards, R., Menz, G., Sikora, R. (eds) Precision Crop Protection - the Challenge and Use of Heterogeneity. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9277-9_20

Download citation

Publish with us

Policies and ethics