Skip to main content

Decision Rules for Site-Specific Weed Management

  • Chapter
  • First Online:
Precision Crop Protection - the Challenge and Use of Heterogeneity

Abstract

For precision weed management decision rules are needed that take into account spatial and temporal variability of weed populations and weed-crop interactions. The following chapter describes different decision rules for online and offline site-specific weed management. Those decision rules use crop-weed competition models, dose-response functions, weed population models and cost functions to calculate the best intensity of weed control for each field section. It is shown that herbicide input and weed control costs can be significantly reduced when farmers use those models in combination with modern sensor and application technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht H, Sprenger B (2008) Long-term effects of reduced tillage on the populations of arable weeds. In: Schröder P, Pfadenhauer J, Munch JC (eds) Perspectives for agroecosystems management. Elsevier B.V, Amsterdam, Boston, Heidelbergp, pp 237–256

    Chapter  Google Scholar 

  • Beckie JH, Johnson EN, Blackshaw RE, Gan Y (2008) Weed suppression by canola and mustard cultivars. Weed Technol 22:182–185

    Article  Google Scholar 

  • Bennett AC, Price AJ, Sturgill MC et al (2003) HADSS, Pocket HERB, and WebHADSS: decision aids for field crops. Weed Technol 17:412–420

    Article  Google Scholar 

  • Berti A, Bravin F and Zanin G (2003) Application of decision-support software for postemergence weed control. Weed Sci 51:618–627

    Article  CAS  Google Scholar 

  • Berti A, Zanin G (1994) Density equivalent: a method for forecasting yield loss caused by mixed weed populations. Weed Res 34:326–333

    Article  Google Scholar 

  • Blackshaw R, O’Donovan JT, Harker KN et al (2006) Reduced herbicide doses in field crops: a review. Weed Biol Manag 6:10–17

    Article  CAS  Google Scholar 

  • Brain P, Cousens R (1990) The effect of weed distribution on predictions of yield loss. J Appl Ecol 27:735–742

    Article  Google Scholar 

  • Christensen S (1995) Weed suppression ability of spring barley varieties. Weed Res 35:241–249

    Article  Google Scholar 

  • Christensen S, Heisel T, Walter AM, Graglia E (2003) A decision algorithm for patch spraying. Weed Res 43:276–284

    Article  Google Scholar 

  • Cousens R (1985) A simple model relating yield loss to weed density. Ann Appl Bot 107:239–252

    Article  Google Scholar 

  • Cousens RD, Brown RW, McBratney AB et al (2002) Sampling strategy is important for producing weed maps: a case study using kriging. Weed Sci 50:542–546

    Article  CAS  Google Scholar 

  • Dicke D, Kühbauch W (2005) Einsatz von satellitengestützter Fernerkundung zur Früherkennung von herbizidbedingten Schäden in Mais. 35. GIL Jahrestagung 19:(22.09.2005) 355–359

    Google Scholar 

  • Dicke D, Kühbauch W (2006) Temporal dynamics of weed populations in arable fields using long-term site-specific weed control. In: Preston C, Watts JH, Crossman ND (eds) Proceedings of 15th Australian Weeds Conference. Gillingham Printers, Adelaide, pp 375–378

    Google Scholar 

  • Donald DD (1998) Estimating relative crop yield loss resulting from herbicide damage using crop ground cover or rated stunting, with maize and sethoxydim as a case study. Weed Res 38:425–431

    Article  Google Scholar 

  • Fernandez ON, Vignolio OR, Requesens EC (2002) Competition between Corn (Zea mays) and bermudagrass (Cynodon dactylon) in relation to the crop plant arrangement. Agronomie 22:293–305

    Article  Google Scholar 

  • Gerhards R, Christensen S (2003) Real-time weed detection, decision making and patch spraying in maize, sugar beet, winter wheat and winter barley. Weed Res 43:385–392

    Article  Google Scholar 

  • Gerhards R, Oebel H (2006) Practical experiences with a system for site-specific weed control in arable crops using real-time image analysis and GPS-controlled patch spraying. Weed Res 46:185–193

    Article  Google Scholar 

  • Gutjahr C, Weis M, Sökefeld M et al (2008) Erarbeitung von Entscheidungsalgorithmen für die teilflächenspezifische Unkrautbekämpfung. J Plant Dis Prot XXI(special issue):143–148

    Google Scholar 

  • Hamouz P, Novakova K, Soukup J, Tyser L (2006) Evaluation of sampling and interpolation methods used for weed mapping. J Plant Dis Prot XX(special issue):205–215

    Google Scholar 

  • Hock B, Fedtke C, Schmidt RR (1995) Herbizide: Entwicklung, Anwendung, Wirkungen, Nebenwirkungen. Thieme, Stuttgart, New York

    Google Scholar 

  • Hock S, Knezevic S, Johnson W et al (2007) WeedSOFT: effects of corn-row spacing for predicting herbicide efficacy on selected weed species. Weed Technol 21:219–224

    Article  CAS  Google Scholar 

  • Hoffman ML, Buhler DD, Owen MDK (1999) Weed population and crop yield response to recommendations from a weed control decision aid. Agron J 91:386–392

    Article  Google Scholar 

  • Kleinmann M, Vogel H (2008) Verträglichkeit von Maisherbiziden beachten, AGRAVIS Pflanzenbau-Vertriebsberatung Münster. LOP, Mai, pp 36–39

    Google Scholar 

  • Kristensen L, Olsen J, Weiner J (2008) Crop density, sowing pattern, and nitrogen fertilization effects on weed suppression and yield in spring wheat. Weed Sci 56:97–102

    Article  CAS  Google Scholar 

  • Kropf MJ, Lotz LAP, Weaver SE et al (1995) A two parameter model for prediction of crop loss by weed competition from early observations of relative leaf area of weeds. Ann Appl Biol 126:329–346

    Article  Google Scholar 

  • Kropff MJ, Spitters CJT (1991) A simple model of crop loss by weed competition from early observations on leaf area of the weeds. Modeling the effects of weeds on crop production. Weed Res 318:97–105

    Article  Google Scholar 

  • Kropff MJ, Wallinga J, Lotz LAP (1996) Weed population dynamics. In: Brown H, Cussans GW, Devine MD et al (eds) Proceedings of the 2nd International Weed Control Congress, Copenhagen, pp 3–14

    Google Scholar 

  • Lindquist JL, Dieleman JA, Mortensen DA et al (1998) Economic importance of managing spatially heterogeneous weed populations. Weed Technol 12:7–13

    Google Scholar 

  • Moss SR (1990) The seed cycle of Alopecurus myosuroides in winter cereals: a quantitative analysis. Proceedings of EWRS Symposium, Helsinki, European Weed Research Society, Wageningen, pp 27–35, 4–6 June 1990

    Google Scholar 

  • Niemann P (1986) Mehrjährige Anwendung des Schadensschwellenprinzips bei der Unkrautbekämpfung auf einem landwirtschaftlichen Betrieb. EWRS Symposium Economic Weed Control, Wagenigen, pp 385–392

    Google Scholar 

  • Nordmeyer H, Zuck A, Häusler A (2003) Experiences of site-specific weed control in winter weeds. In: Stafford J, Werner A (eds) Proceedings of the Precision Agriculture 2003. Academic Publishers, Wageningen

    Google Scholar 

  • Oebel H, Gerhards R, Beckers G et al (2004) Site-specific weed control using digital image analysis and georeferenced application maps – first field experiments. J Plant Dis Prot XIX(special issue):459–465

    Google Scholar 

  • Pallut B (1992) Zur Verbesserung der Vorhersagegenauigkeit von unkrautbedingten Kornertragsverlusten bei Wintergetreide. Z PflKrankh PflSchutz XIII(Sonderheft):129–137

    Google Scholar 

  • Parsons DJ, Benjamin LR, Clarke J et al (2009) Weed Manager – A model-based decision support system for weed management in arable crops. Comput Electron Agric 65:155–167

    Article  Google Scholar 

  • Ritter C, Dicke D, Weis M et al (2008) An on-farm research approach to quantify yield variability and to derive decision rules for site-specific weed management. Prec Agric 9:133–144

    Article  Google Scholar 

  • Ritter C, Gerhards R (2008) Population dynamics of Galium aparine L. and Alopecurus myosuroides Huds. under the influence of site-specific weed management. J Plant Dis Prot XXI(special issue):209–214

    Google Scholar 

  • Rydahl P (2004) A Danish decision support system for integrated management of weeds. Aspects Appl Biol 72:43–52

    Google Scholar 

  • Rydahl P, Thonke KE (1993) PC-Plant Protection: optimising chemical weed control. Bull OEPP/EPPO Bull 23:589–594

    Google Scholar 

  • Sökefeld M, Gerhards R, Oebel H, Therburg RD (2007) Image acquisition for weed detection and identification by digital image analysis. In: Stafford JV (ed) Precision agriculture`07. Academic Publishers, Wageningen, pp 523–528

    Google Scholar 

  • Stamps RH (1998) Correlation between visual ratings with quantitative measurements of weed control during containerized landscape plant production. Proc Fla State Hort Soc 102:112–113

    Google Scholar 

  • Streibig JC (1988) Herbicide bioassay. Weed Res 28:479–484

    Article  CAS  Google Scholar 

  • Swinton SM, Renner KA, Kells JJ (2002) On-farm comparison of three postemergence weed management decision aids in Michigan. Weed Technol 16:691–698

    Article  Google Scholar 

  • Timmermann C, Gerhards R, Kühbauch W (2003) The economic impact of the site specific weed control. Prec Agric 4:249–260

    Article  Google Scholar 

  • Vondricka J (2007) Study on the process of direct nozzle injection for real-time site-specific pesticide application. Dissertation, University of Bonn, Bonn

    Google Scholar 

  • Wallinga J, Groeneveld RMW, Lotz LAP (1998) Measures that describe weed spatial patterns at different levels of resolution and their applications for patch spraying of weeds. Weed Res 38:352–359

    Article  Google Scholar 

  • Weis M, Gerhards R (2007) Feature extraction for the identification of weed species in digital images for the purpose of site-specific weed control. In: Stafford JV (ed) Precision agriculture ’07. Academic Publishers, Wageningen, pp 537–545

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Gutjahr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gutjahr, C., Gerhards, R. (2010). Decision Rules for Site-Specific Weed Management. In: Oerke, EC., Gerhards, R., Menz, G., Sikora, R. (eds) Precision Crop Protection - the Challenge and Use of Heterogeneity. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9277-9_14

Download citation

Publish with us

Policies and ethics