Remote Sensing for the Detection of Soil-Borne Plant Parasitic Nematodes and Fungal Pathogens

  • Christian Hillnhütter
  • Astrid Schweizer
  • Volker Kühnhold
  • Richard A. Sikora


This chapter reviews past developments and the present state-of-the-art remote sensing for the detection of soil-borne nematodes and plant pathogens . Nematodes and soil-borne pathogens are considered ideal targets for the application of precision agriculture with non-contact sensing methodologies. The clustered occurrence and low level of mobility of nematodes and pathogens in the soil and the induction of symptoms in the leaves make them perfect targets for remote sensing detection. Data obtained with infrared thermography and hyperspectral reflectance for the remote sensing of plant parasitic nematodes and root rotting fungi in sugar beet as well as delineation of complex-disease interactions is also presented. The management of these two pest groups usually relies on full field pesticide treatments, even when only a small section of the field is infested. This underscores the need for remote sensing of disease clusters and the resulting application of site-specific management .


Normalize Difference Vegetation Index Remote Sense Rhizoctonia Solani Hyperspectral Data Pulse Amplitude Modulate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge financial support of the German Research Foundation (DFG). In addition we would like to recognize the strong support offered to us by the late Dr. Josef Schlang, nematologist at the Biologische Bundesanstalt, Institute for Nematology, Elsdorf, Germany who assisted us in many of the initial field trials.


  1. Apostol S, Viau AA, Tremblay N et al (2003) Laser-induced fluorescence signatures as a tool for remote monitoring of water and nitrogen stresses in plants. Can J Remote Sens 29:57–65CrossRefGoogle Scholar
  2. Asmus GL Ferraz LCCB (2002) Effect of population densities of Heterodera glycines race 3 on leaf area, photosynthesis and yield of soybean. Fitopatol Bras 27:273–278Google Scholar
  3. Berg A (1980) Remote sensing techniques applied to sugar beet diseases in Germany and Italy: introduction to the results of a European project. Int Arch Photogramm 23:457–462Google Scholar
  4. Brodrick HT, Gilbertson B, Kreitzer MH (1971) Advances in aerial photography. SA Citrus J 449:9–13Google Scholar
  5. Büttner G, Pfähler B, Märländer B (2004) Greenhouse and field techniques for testing sugar beet for resistance to Rhizoctonia root and crown rot. Plant Breed 123:158–166CrossRefGoogle Scholar
  6. Cai D, Kleine M, Kifle S et al (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275:832–834PubMedCrossRefGoogle Scholar
  7. Cervantes-Martínez J, Flores-Hernández R, Rodrígez-Graray B, Santacruz-Ruvalcaba F (2002) Detection of bacterial infection of agave plants by laser-induced fluorescence. Appl Opt 41:2541–2545PubMedCrossRefGoogle Scholar
  8. Chaerle L, Hagenbeck D, De Bruyne E et al (2004) Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage. Plant Cell Physiol 45: 887–896PubMedCrossRefGoogle Scholar
  9. Cook CG, Escobar DE, Everitt JH et al (1999) Utilizing airborne video imagery in kenaf management and production. Ind Crop Prod 19:205–210CrossRefGoogle Scholar
  10. Davis RF, Ortiz BV, Perry C et al (2008) Considering field physical characteristics in assessing risk and delineating nematode management zones. Proceedings of 5th International Congress of Nematology, BrisbaneGoogle Scholar
  11. Domsch H, Giebel A (2004) Estimation of soil textural features from soil electrical conductivity recorded using the EM38. Prec Agric 5:389–409CrossRefGoogle Scholar
  12. Dunning RA (1957) Stem eelworm invasion of seedling sugar beet and development of crown canker. Nematologica 2:362–368Google Scholar
  13. European Commission (2006) The European sugar sector. Accessed 15th Dec 2009
  14. Franke W (1997) Nutzpflanzenkunde: nutzbare Gewächse der gemäßigten Breiten, Subtropen und Tropen. Thieme, Stuttgart & New YorkGoogle Scholar
  15. Friedmann SP (2005) Soil properties influencing apparent electrical conductivity: a review. Comput Electron Agric 46:45–70CrossRefGoogle Scholar
  16. Gausman HW, Heald CM, Escobar DE (1975) Effect of Rotylenchulus reniformis on reflectance of cotton plant leaves. J Nematol 7:368–374PubMedGoogle Scholar
  17. Gebhardt A (1984) Möglichkeiten zur Früherkennung phytopathologischer Erscheinungen mit Hilfe der Thermographie – Übersicht und erste Ergebnisse. Arch Phytopathol PflSch 20: 437–445CrossRefGoogle Scholar
  18. Gebhardt A (1989) Differenzierte Einschätzung des Wasserversorgungszustandes landwirtschaftlicher Kulturen mittels thermographischer Luftaufnahmen. Arch Acker- Pflanzenbau Bodenkd 34:741–748Google Scholar
  19. Griffin GD (1974) Parasitism of nonhost cultivars by Ditylenchus dipsaci. J Nematol 7:236–239Google Scholar
  20. Heald CM, Thames WH, Wiegand CL (1972) Detection of Rotylenchulus reniformis infestations by aerial infrared photography. J Nematol 4:298–300PubMedGoogle Scholar
  21. Heath WL, Haydock PPJ, Wilcox A, Evans K (2000) The potential use of spectral reflectance from the potato crop for remote sensing of infection by potato cyst nematodes. Asp Appl Biol 60:185–188Google Scholar
  22. Hillnhütter C, Mahlein AK (2008) Early detection and localisation of sugar beet diseases: new approaches. Ges Pflanzen 60:143–149CrossRefGoogle Scholar
  23. Hillnhütter C, Mahlein AK, Sikora RA, Oerke EC (2010) Hyperspectral imaging of sugar beet symptoms caused by soil-borne organisms. Proceedings of the 10th international conference on precision agriculture, St. Paul, MinnesotaGoogle Scholar
  24. Hillnhütter C, Sikora RA, Oerke EC (2009) Detection of complex soil-borne disease interactions by hyperspectral foliar surface monitoring in sugar beet. Phytopathology 99:53Google Scholar
  25. Hillnhütter C, Mahlein AK, Sikora RA, Oerke EC (2010) Hyperspectral imaging of sugar beet symptoms caused by soil-borne organisms. Proceedings of the Tenth International Conference on Precision Agriculture, St. Paul, MinnesotaGoogle Scholar
  26. Hope A, Coulter L, Stow D, Peterson S, Service D, Telk A, Melin D (1999) Root rot detection in sugar beet using digital multispectral video. Proceedings of AARS, 12th Asian Conference Remote Sensing, Hong KongGoogle Scholar
  27. Kiewnick S, Jacobsen BJ, Braun-Kiewnick A et l (2001) Integrated control of Rhizoctonia crown and root rot of sugar beet with fungicides and antagonistic bacteria. Plant Dis 85:718–722CrossRefGoogle Scholar
  28. Kohonen T (1998) The self-organizing map. Neurocomputing 21:1–6CrossRefGoogle Scholar
  29. Kühnhold V, Kiewnick S, Sikora RA (2006) Development of an in vivo bioassay to identify sugar beet resistance to the stem nematode Ditylenchus dipsaci. Nematology 8:641–645CrossRefGoogle Scholar
  30. Laudien R, Bareth G, Doluschitz R (2004) Comparison of remote sensing based analysis of crop diseases by using high resolution multispectral and hyperspectral data – case study: Rhizoctonia solani in sugar beet. Proceedings of 12th International Conference on Geoinformatics, Gävle, pp 670–676Google Scholar
  31. Laudien R, Bürcky K, Doluschitz R, Bareth G (2006) Establishment of a web-based spectral database for the analysis of hyperspectral data from Rhizoctonia solani-inoculated sugarbeets. Sugar Ind 131:164–170Google Scholar
  32. Lawrence GW, Doshi RA, King RL et al (2007) Nematode management using remote sensing technology, self-organized maps and variable rate nematicide applications. Proceedings of World Cotton Research Conference. Accessed 28 Aug 2009
  33. Lawrence GW, Kelley AT, King RL et al (2004) Remote sensing and precision nematicide applications for Rotylenchulus reniformis management in cotton. In: Cook R, Hunt DJ (eds) Nematology monographs and perspectives. Brill, Leiden and Boston.Google Scholar
  34. Lawrence GW, Lawrence KS, van Santen E et al (2009) Use of hyperspectral imagery and soil electron conductivity for site specific reniform nematode (R. reniformis) evaluations and management. Proceedings of World Cotton Research Conference, San Antonio, pp 139–143Google Scholar
  35. Lee YJ (1989) Aerial photography for the detection of soil-borne disease. Can J Plant Pathol 11:173–176CrossRefGoogle Scholar
  36. Lenthe JH, Oerke EC, Dehne HW (2007) Digital infrared thermography for monitoring canopy health of wheat. Prec Agric 8:15–26CrossRefGoogle Scholar
  37. Lichtenthaler HK, Miehé JA (1997) Fluorescence imaging as a tool for plant stress. Trends Plant Sci 2:316–320CrossRefGoogle Scholar
  38. Lindenthal M, Steiner U, Dehne HW, Oerke EC (2005) Effect of downy mildew development on transpiration of cucumber leaves visualized by digital infrared thermography. Phytopathology 95:233–240PubMedCrossRefGoogle Scholar
  39. Lu D, Mausel P, Brondizio E, Moran E (2004) Change detection techniques. Int J Rem Sens 25:2365–2407CrossRefGoogle Scholar
  40. Luc M, Sikora RA, Bridge J (2005) Plant parasitic nematodes in subtropical and tropical agriculture. CABI Bioscience, EghamCrossRefGoogle Scholar
  41. Mertens FM, Pätzold S, Welp G (2008) Spatial heterogeneity of soil properties and its mapping with apparent electrical conductivity. J Plant Nutr Soil Sci 171:146–154CrossRefGoogle Scholar
  42. Muller J, Kahalilian A, Kirkpatrick T et al (2002) Using electrical conductivity to predict nematode distribution in cotton fields. Proceedings of 4th International Congress of Nematology, Tenerife. Accessed 28 Aug 2009
  43. Nicolas H, Rivoal R, Duchesne J, Lili Z (1991) Detection of Heterodera avenae infestations on winter wheat by radiothermometry. Rev Nématol 14:285–290Google Scholar
  44. Nilsson HE (1995) Remote sensing and image analysis in plant pathology. Annu Rev Phytopathol 15:489–527CrossRefGoogle Scholar
  45. Norman GG, Fritz NL (1965) Infrared photography as an indicator of disease and decline in citrus trees. Proc Florida State Hort Soc 78:59–63Google Scholar
  46. Nowatzki J, Andres R, Kyllo K (2009) Agricultural remote sensing basics. Bulletin AE-1262. NDSU Extension Service. Accessed 28 Aug 2009
  47. Nutter FW (1990) Remote sensing and image analysis for crop loss assessment. In: IRRI (ed) Cop Loss Assessment in Rice. Online editionGoogle Scholar
  48. Nutter FW, Tylka GL, Guan J et al (2002) Use of remote sensing to detect soybean cyst nematode-induced plant stress. J Nematol 34:222–231PubMedGoogle Scholar
  49. Oerke EC (2005) Crop losses to pests. J Agric Sci 144:31–43CrossRefGoogle Scholar
  50. Oerke EC, Steiner U, Dehne HW, Lindenthal M (2006) Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. J Exp Bot 57:2121–2132PubMedCrossRefGoogle Scholar
  51. Ophel-Keller K, McKay A, Hartley D et al (2008) Development of a routine DNA-based testing service for soil-borne diseases in Australia. Australas Plant Pathol 37:243–253CrossRefGoogle Scholar
  52. Perry JN (1995) Spatial analysis by distance indices. J Anim Ecol 64:303-314CrossRefGoogle Scholar
  53. Pinter PJ, Hatfield JL, Schepers JS et al (2003) Remote sensing for crop management. Photogramm Eng Rem Sens 69:647–664Google Scholar
  54. Pinter PJ, Stanghellini ME, Reginato RJ et al (1979) Remote detection of biological stresses in plants with infrared thermometry. Science 205:585–586PubMedCrossRefGoogle Scholar
  55. Rouse JW, Haas RH, Schell JA, Deering DW (1974) Monitoring vegetation systems in the Great Plains with ERTS. Proceedings of 3rd Earth Resources Technology Satellite-1 Symposium, Greenbelt. NASA SP-351:3010-3017Google Scholar
  56. Rupe J, Kirkpatrick T, Bajwa S, Cartwright R (2005) Application of precision agriculture technology to define and manage nematodes and diseases of soybean. Int Plant Nutr Inst
  57. 64de/8c963348cc505d6f86256e8c005391bc/$FILE/AR-24F%20Rupe%202004%20Annual%Google Scholar
  58. 20rpt.doc. Accessed 28 Aug 2009Google Scholar
  59. Sanwald E (1979) Die spektralen Reflexionseigenschaften gesunder und durch Zystennematoden geschädigter Zuckerrübenpflanzen und ihre Abbildung auf Infrarotluftaufnahmen. Dissertation University Freiburg, GermanyGoogle Scholar
  60. Schlang J (1991) Anbau resistenter Zwischenfrüchte zur biologischen Bekämpfung des Rübenzystennematoden. Zuckerrübe 40:476–488Google Scholar
  61. Schmitz A (2005) Eignung berührungsloser Messverfahren zur Erkennung des Befalls von Zuckerrüben durch Heterodera schachtii (Schmidt) und Möglichkeiten der teilflächenspezifischen Bekämpfung. Dissertation University Bonn, GermanyGoogle Scholar
  62. Schmitz A, Kiewnik S, Schlang J et al (2003) Use of remote sensing to identify the spatial distribution of the sugar beet cyst nematode Heterodera schachtii. In: Werner A, Jarfe A (eds) Programme book of the joint conference of ECPA – ECPLF. Wageningen Academic Publishers, WageningenGoogle Scholar
  63. Schmitz A, Kiewnick S, Schlang J, Sikora RA (2004a) Use of high resolution digital thermography to detect Heterodera schachtii infestation in sugar beets. Comm Appl Biol Sci 69:359–363Google Scholar
  64. Schmitz A, Tartachnyk II, Noga G, Sikora RA (2004b) Einfluss unterschiedlicher Popula-tionsdichten des Rübenzystennematoden Heterodera schachtii auf die laserinduzierten Fluoreszenzmuster von Zuckerrüben. Mitt Biol Bundesanst Land- Forstw Berlin-Dahlem 396:566Google Scholar
  65. Schmitz A, Tartachnyk II, Kiewnick S, Sikora RA, Kühbauch W (2006) Detection of Heterodera schachtii infestation in sugar beet by means of laser-induced and pulse amplitude modulated chlorophyll fluorescence. Nematology 8:273–286CrossRefGoogle Scholar
  66. Scholz C, Pätzold S, Welp G (2009) Spatial variability of soil properties and the occurrence of soil-borne pests in sugar beet. Programme book of the joint conference of JIAC. Wageningen Academic Publishers, WageningenGoogle Scholar
  67. Schowengerdt RA (1997) Remote sensing, models and methods for image processing. Elsevier, San DiegoGoogle Scholar
  68. Seinhorst JW (1956) Population studies on steem eelworms (Ditylenchus dipsaci). Nematologica 1:159–164CrossRefGoogle Scholar
  69. Stafford JV (2000) Implementing precision agriculture in the 21st century. J Agric Eng Res 76:267–275CrossRefGoogle Scholar
  70. Steddom K, Heidel G, Jones D, Rush CM (2003) Remote detection of rhizomania in sugar beets. Phytopathology 93:720–726PubMedCrossRefGoogle Scholar
  71. Steddom K, Jones D, Rush C (2005) A picture is worth than thousand words. Accessed 8 Sept 2009
  72. Sudduth KA, Kitchen NR, Wiebold WJ et al (2005) Relating apparent electrical conductivity to soil properties across the north-central USA. Comput Electron Agric 46:263–283CrossRefGoogle Scholar
  73. Tarkington RG, Seren AL (1963) Color and false color films for aerial photography. Photogramm Eng 29:88–95Google Scholar
  74. Tartachnyk II, Rademacher I (2003) Estimation of nitrogen deficiency of sugar beet and wheat using parameters of laser induced and pulse amplitude modulated chlorophyll fluorescence. J Appl Bot 77:61–67Google Scholar
  75. Taubenhaus JJ, Ezekiel WN, Neblette CB (1929) Airplane photography in the study of cotton root rot. Phytopathology 19:1025–1029Google Scholar
  76. Toler RW, Smith BD, Harlan JC (1981) Use of aerial color infrared photography to evaluate crop disease. Plant Dis 65:24–31CrossRefGoogle Scholar
  77. Tylka D (2006) Two nematode soil sample analysis options. Integrated crop management. Accessed 28 Aug 2009
  78. Upchurch DR (2003) Remote sensing for crop management. Am Soc Photogramm Eng Rem Sens 69:647–664Google Scholar
  79. Wheeler TA and Kaufman HW (2003) Relationship of aerial broad band reflectance to Meloidogyne incognita density in cotton. J Nematol 36:48–57Google Scholar
  80. Wolcott MC, Overstreet C, Padgett B, Burris E (2004) Using soil electrical conductivity to denote potential nematode managements zones. Proceedings of the Beltwide Cotton Conferences, San Antonio, pp 349–353Google Scholar
  81. Zhang Z, Wang M, Wang N (2002) Precision agriculture-a worldwide overview. Comput Electron Agric 36:113–132CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V.  2010

Authors and Affiliations

  • Christian Hillnhütter
    • 1
  • Astrid Schweizer
    • 1
  • Volker Kühnhold
    • 1
  • Richard A. Sikora
    • 1
  1. 1.Institute of Crop Science and Resource Conservation (INRES) – PhytomedicineBonnGermany

Personalised recommendations