Skip to main content

Part of the book series: Developments in Applied Phycology ((DAPH,volume 4))

Abstract

The capability of flow cytometry for rapid quantitative observations of individual cells has made it an important tool in plankton research since the mid-1980s. One indication of the impact of flow cytometry has been the appearance of special journal issues focused on applications in aquatic sciences (Cytometry, Yentsch and Horan 1989; Scientia Marina, Reckermann and Colijn 2000; Cytometry, Courties and Troussellier 2001). Since these publications, major advances have been made in in situ applications and in new approaches enabled by molecular and genomic techniques. In this chapter we provide a brief overview of the history of flow cytometry in plankton research, summarize basic measurement principles and review specific applications, and conclude with an assessment of some emerging areas and future prospects. We stress uses that depend on inherent fluorescence characteristics, with some related reference to uses involving fluorescent markers, stains or probes. Because a number of previous reviews and methodology guides are available (e.g., Chisholm et al. 1986; Legendre and Yentsch 1989; Yentsch and Horan 1989; Burkhill and Mantoura 1990; Olson et al. 1991, 1993; Troussellier et al. 1993; Collier and Campbell 1999; Collier 2000; Veldhuis and Kraay 2000; Vives-Rego et al. 2000; Campbell 2001; Legendre et al. 2001; Marie et al. 2005), our primary focus will be on recent and forward-looking approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.whoi.edu/mvco

References

  • Ackleson SG, Spinrad RW (1988) Size and refractive index of individual marine particulates: a flow cytometric approach. Appl Opt 27:1270–1277

    CAS  Google Scholar 

  • Agusti S (2004) Viability and niche segregation of Prochlorococcus and Synechococcus cells across the Central Atlantic Ocean. Aquat Microb Ecol 36:53–59

    Google Scholar 

  • Ahlgren NA, Rocap G, Chisholm SW (2006) Measurement of Prochlorococcus ecotypes using real-time polymerase chain reaction reveals different abundances of genotypes with similar light physiologies. Environ Microbiol 8:441–454

    CAS  Google Scholar 

  • Aiken J et al (2007) Validation of MERIS reflectance and chlorophyll during the BENCAL cruise October 2002: preliminary validation of new demonstration products for phytoplankton functional types and photosynthetic parameters. Int J Remote Sensing 28:497–516

    Google Scholar 

  • Alvain S, Moulin C, Dandonneau Y, Bréon FM (2005) Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery. Deep Sea Res I 52:1989–2004

    Google Scholar 

  • Amann R, Fuchs BM (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Micro 6:339–348

    CAS  Google Scholar 

  • André J-M, Navarette C, Blanchot J, Radenac M-H (1999) Picophytoplankton dynamics in the equatorial Pacific: Growth and grazing rates from cytometric counts. J Geophys Res 104:3369–3380

    Google Scholar 

  • Biegala IC, Not F, Vaulot D, Simon M (2003) Quantitative assessment of picoeukaryotes in the natural environment by using taxon-specific oligonucleotide probes in association with tyramide signal amplification-fluorescence in situ hybridization and flow cytometry. Appl Env Microbiol 69:5519–5529

    CAS  Google Scholar 

  • Binder BJ, DuRand MD (2002) Diel cycles in surface waters of the equatorial Pacific. Deep Sea Res II 49:2601–2617

    Google Scholar 

  • Bouman HA et al (2006) Oceanographic basis of the global surface distribution of Prochlorococcus ecotypes. Science 312:918–921

    CAS  Google Scholar 

  • Brehm-Stecher B (2007) New technologies for imaging individual microbial cells. In: Frischknecht F, Shorte S (eds) Imaging cellular and molecular biological function. Springer-Verlag, Berlin, pp 307–337

    Google Scholar 

  • Brehm-Stecher B, Hyldig JJ, Johnson EA (2005) Design and evaluation of 16S rRNA-targeted peptide nucleic acid probes for whole-cell detection of members of the genus Listeria. Appl Env Microbiol 71:5451–5457

    CAS  Google Scholar 

  • Burkhill PH, Mantoura RFC (1990) The rapid analysis of single marine cells by flow cytometry. Phil Trans R Soc Lond A 333:99–112

    Google Scholar 

  • Campbell L (2001) Flow cytometric analysis of autotrophic picoplankton. In: Paul JH (ed) Methods in microbiology: marine microbial ecology, vol 30. Academic Press, New York, pp 317–343

    Google Scholar 

  • Campbell L, Hongbin L, Vaulot D (1997) Annual variability of phytoplankton and bacteria in the subtropical North Pacific Ocean at Station ALOHA during the 1991–1994 ENSO event. Deep Sea Res I 44:167

    CAS  Google Scholar 

  • Campbell L, Nolla H, Vaulot D (1994) The importance of Prochlorococcus to community structure in the central North Pacific Ocean. Limnol Oceanogr 39:954–961

    CAS  Google Scholar 

  • Campbell L, Olson RJ, Sosik HM (2008) First toxic Dinophysis bloom observed in the Gulf of Mexico, USA. Harmful Algae News 36:10–11

    Google Scholar 

  • Cavender-Bares KK, Frankel SL, Chisholm SW (1998) A dual sheath flow cytometer for shipboard analyses of phytoplankton communities from the oligotrophic ocean. Limnol Oceanogr 43:1383–1388

    Google Scholar 

  • Chisholm SW, Armbrust EV, Olson RJ (1986) The individual cell in phytoplankton ecology: cell cycles and application of flow cytometry. In: Platt T, Li WKW (eds) Photosynthetic picoplankton. Can Bull Fish Aquat Sci 214:343–369

    Google Scholar 

  • Chisholm SW, Frankel SL, Goerike R, Olson RJ, Palenik B, Waterbury JB, Westjohnsrud L, Zettler ER (1992) Prochlorococcus marinus nov. gen. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch Microbiol 157:297–300

    CAS  Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury J, Welschmeyer N (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343

    Google Scholar 

  • Chung SP, Gardner WD, Richardson MJ, Walsh ID, Landry MR (1996) Beam attenuation and micro-organisms: spatial and temporal variations in small particles along 140° W during the 1992 JGOFS EqPac transects. Deep Sea Res II 43:1205–1226

    Google Scholar 

  • Coleman ML, Chisholm SW (2007) Code and context: Prochlorococcus as a model for cross-scale biology. Trends Microbiol 15:398–407

    CAS  Google Scholar 

  • Collier JL (2000) Flow cytometry and the single cell in phycology. J Phycol 36:628–644

    Google Scholar 

  • Collier JL, Campbell L (1999) Flow cytometry in molecular aquatic ecology. Hydrobiologia 401:33–53

    Google Scholar 

  • Courties C, Troussellier M (2001) Flow cytometry in the marine environment. Cytometry 44:163

    Google Scholar 

  • Cunningham A (1990) Fluorescence pulse shape as a morphological indicator in the analysis of colonial microalgae by flow cytometry. J Microbiol Meth 11:27–36

    Google Scholar 

  • Cunningham A, McKee D, Craig S, Tarran G, Widdicombe C (2003) Fine-scale variability in phytoplankton community structure and inherent optical properties measured from an autonomous underwater vehicle. J Mar Sys 43:51–59

    Google Scholar 

  • Dandonneau Y, Deschamps P, Nicholas J, Loisel H, Blanchot J, Montel Y, Thieuleux F, Becu G (2004) Seasonal and interannual variability of ocean color and composition of phytoplankton communities in the North Atlantic, equatorial Pacific and South Pacific. Deep Sea Res II 51:303–318

    CAS  Google Scholar 

  • Dickey TD, Williams AJ III (2001) Interdisciplinary ocean process studies on the New England shelf. J Geophys Res 106:9427–9434

    Google Scholar 

  • Dubelaar GBJ, Casotti R, Tarran GA, Biegala IC (2007) Phytoplankton and their analysis by flow cytometry. In: Dolezel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells: Analysis of genes, chromosomes and genomes. Wiley, New York, pp 287–322

    Google Scholar 

  • Dubelaar GBJ, Gerritzen PL (2000) CytoBuoy: a step forward towards using flow cytometry in operational oceanography. Sci Mar 64:255–265

    Google Scholar 

  • Dubelaar GBJ, Groenewegen AC, Stokdijk W, van den Engh GJ, Visser JWM (1989) Optical plankton analyser: a flow cytometer for plankton analysis, II: Specifications. Cytometry 10:529–539

    CAS  Google Scholar 

  • Duff RJ, Ball H, Lavrentyev PJ (2008) Application of combined morphological-molecular approaches to the identification of planktonic protists from environmental samples. J Euk Microbiol 55:306–312

    Google Scholar 

  • DuRand MD, Green RE, Sosik HM, Olson RJ (2002) Diel variations in optical properties of Micromonas pusilla (Prasinophyceae). J Phycol 38:1132–1142

    Google Scholar 

  • DuRand MD, Olson RJ (1996) Contributions of phytoplankton light scattering and cell concentration changes to diel variations in beam attenuation in the equatorial Pacific from flow cytometric measurements of pico-, ultra- and nanoplankton. Deep Sea Res II 43:891–906

    Google Scholar 

  • DuRand MD, Olson RJ (1998) Diel patterns in optical properties of the chlorophyte Nannochloris sp.: relating individual-cell to bulk measurements. Limnol Oceanogr 43:1107–1118

    Google Scholar 

  • DuRand MD, Olson RJ, Chisholm SW (2001) Phytoplankton population dynamics at the Bermuda Atlantic time-series station in the Sargasso Sea. Deep-Sea Res II 48:1983–2003

    Google Scholar 

  • Dusenberry JA, Frankel SL (1994) Increasing the sensitivity of a FACScan flow cytometer to study oceanic picoplankton. Limnol Oceanogr 39:206–209

    Google Scholar 

  • Dusenberry JA, Olson RJ, Chisholm SW (2000) Field observations of oceanic mixed layer dynamics and picophytoplankton photoacclimation. J Mar Sys 24:221–232

    Google Scholar 

  • Dusenberry JA, Olson RJ, Chisholm SW (2001) Photoacclimation kinetics of single-cell fluorescence in laboratory and field populations of Prochlorococcus. Deep Sea Res I 48:1443–1458

    Google Scholar 

  • Foulon E, Not F, Jalabert F, Cariou T, Massana R, Simon N (2008) Ecological niche partitioning in the picoplanktonic green alga Micromonas pusilla: evidence from environmental surveys using phylogenetic probes. Environ Microbiol 10:2433–2443

    CAS  Google Scholar 

  • Fuller NJ, Marie D, Partensky F, Vaulot D, Post AF, Scanlan DJ (2003) Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Appl Env Microbiol 69:2430–2443

    CAS  Google Scholar 

  • Goericke R, Repeta DJ (1992) The pigments of Prochlorococcus marinus: the presence of divinyl chlorophyll a and b in a marine procaryote. Limnol Oceanogr 37:425–433

    CAS  Google Scholar 

  • Green RE, Sosik HM (2004) Analysis of apparent optical properties and ocean color models using measurements of seawater constitutents in New England continental shelf surface waters. J Geophys Res 109:C03026. doi:03010.01029/02003JC001977

    Google Scholar 

  • Green RE, Sosik HM, Olson RJ (2003a) Contributions of phytoplankton and other particles to inherent optical properties in New England continental shelf waters. Limnol Oceanogr 48:2377–2391

    Google Scholar 

  • Green RE, Sosik HM, Olson RJ, DuRand MD (2003b) Flow cytometric determination of size and complex refractive index for marine particles: Comparison with independent and bulk estimates. Appl Opt 42:526–541

    Google Scholar 

  • Grégori G et al (2001) Resolution of viable and membrane-compromised bacteria in freshwater and marine waters based on analytical flow cytometry and nucleic acid double staining. Appl Env Microbiol 67:4662–4670

    Google Scholar 

  • Huang B, Hou J, Lin S, Chen J, Hong H (2008) Development of a PNA probe for the detection of the toxic dinoflagellate Takayama pulchella. Harmful Algae 7:495–503

    CAS  Google Scholar 

  • Ibrahim SF, van den Engh G (2003) High-speed cell sorting: fundamentals and recent advances. Curr Opin Biotech 14:5–12

    CAS  Google Scholar 

  • Iglesias-Rodríguez MD, Schofield O, Batley J, Medlin L, Hayes P (2006) Intraspecific genetic diversity in the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae): the use of microsatellite analysis in marine phytoplankton population studies. J Phycol 42:526–536

    Google Scholar 

  • Jacquet S, Lennon J, Marie D, Vaulot D (1998) Picoplankton population dynamics in coastal waters of the northwestern Mediterranean Sea. Limnol Oceanogr 43:1916–1931

    CAS  Google Scholar 

  • Jochem F (2000) Probing the physiological state of phytoplankton at the single-cell level. Sci Mar 64:183–195

    Google Scholar 

  • Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW (2006) Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311:1737–1740

    CAS  Google Scholar 

  • Kachel V, Wietzorrek J (2000) Flow cytometry and integrated imaging. Sci Mar 64:247–254

    Google Scholar 

  • Kalyuzhnaya MG, Zabinsky R, Bowerman S, Baker DR, Lidstrom ME, Chistoserdova L (2006) Fluorescence in situ hybridization-flow cytometry-cell sorting-based method for separation and enrichment of type I and type II methanotroph populations. Appl Env Microbiol 72:4293–4301

    CAS  Google Scholar 

  • Kamykowski D, Zentara SJ, Morrison JM, Switzer AC (2002) Dynamic global patterns of nitrate, phosphate, silicate, and iron availability and phytoplankton community composition from remote sensing data. Glob Biogeochem Cyc 16:1077. doi:10.1029/2001GB001640

    Google Scholar 

  • Legendre L, Courties C, Troussellier M (2001) Flow cytometry in oceanography 1989–1999: environmental challenges and research trends. Cytometry 44:164–172

    CAS  Google Scholar 

  • Legendre L, Yentsch CM (1989) Overview of flow cytometry and image analysis in biological oceanography and limnology. Cytometry 10:501–510

    CAS  Google Scholar 

  • Lenaerts J, Lappin-Scott HM, Porter J (2007) Improved fluorescent in situ hybridization method for detection of bacteria from activated sludge and river water by using DNA molecular beacons and flow cytometry. Appl Env Microbiol 73:2020–2023

    CAS  Google Scholar 

  • Lepesteur M, Martin JM, Fleury A (1993) A comparative study of different preservation methods for phytoplankton cell analysis by flow cytometry. Mar Ecol Prog Ser 93:55–63

    Google Scholar 

  • Li WKW (1989) Shipboard analytical flow cytometry of oceanic ultraplankton. Cytometry 10:564–579

    CAS  Google Scholar 

  • Li WKW (1994) Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: Measurements from flow cytometric sorting. Limnol Oceanogr 39:169–175

    CAS  Google Scholar 

  • Li WKW (2002) Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean. Nature 419: 154–157

    CAS  Google Scholar 

  • Li WKW, Dickie PM (2001) Monitoring phytoplankton, bacterioplankton, and virioplankton in a coastal inlet (Bedford Basin) by flow cytometry. Cytometry 44:236–246

    CAS  Google Scholar 

  • Lipschultz F (1995) Nitrogen-specific uptake rates of marine phytoplankton isolated from natural populations of particles by flow cytometry. Mar Ecol Prog Ser 123:245–258

    Google Scholar 

  • Liu H, Campbell L, Landry MR, Nolla H, Brow SL, Constantinou J (1998) Prochlorococcus and Synechococcus growth rates and contributions to production in the Arabian Sea during the 1995 southeast monsoons. Deep Sea Res II 45:2327–2352

    Google Scholar 

  • Liu H, Nolla H, Campbell L (1997) Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat Microb Ecol 12:39–47

    Google Scholar 

  • Marie D, Brussaard CPD, Thyrhaug R, Bratbak G, Vaulot D (1999) Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl Env Microbiol 65:45–52

    CAS  Google Scholar 

  • Marie D, Partensky F, Jacquet S, Vaulot D (1997) Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl Env Microbiol 63:186–193

    CAS  Google Scholar 

  • Marie D, Simon N, Vaulot D (2005) Phytoplankton cell counting by flow cytometry. In: Andersen RA (ed) Algal culturing techniques. Elsevier, Amsterdam, pp 253–267

    Google Scholar 

  • Moore LR, Rocap G, Chisholm SW (1998) Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393:464–467

    CAS  Google Scholar 

  • Morel A (1974) Optical properties of pure water and pure seawater. In: Jerlov NG, Nielsen ES (eds) Optical aspects of oceanography. Academic Press, New York, pp 1–24

    Google Scholar 

  • Neale PJ, Cullen JJ, Yentsch CM (1989) Bio-optical inferences from chlorophyll a fluorescence: What kind of fluorescence is measured in flow cytometry? Limnol Oceanogr 34:1739–1748

    CAS  Google Scholar 

  • Not F, Simon N, Biegala IC, Vaulot D (2002) Application of fluorescent in situ hybrization coupled with tyramide signal amplification (FISH-TSA) to assess eukaryotic picoplankton composition. Aquat Microb Ecol 28:157–166

    Google Scholar 

  • Olson RJ, Chekalyuk A, Sosik HM (1996) Phytoplankton photosynthetic characteristics from fluorescence induction assays of individual cells. Limnol Oceanogr 41:1253–1263

    Google Scholar 

  • Olson RJ, Chisholm SW, Zettler ER, Altabet MA, Dusenberry JA (1990a) Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean. Deep Sea Res 37:1033–1051

    Google Scholar 

  • Olson RJ, Chisholm SW, Zettler ER, Armbrust EV (1988) Analysis of Synechococcus pigment types in the sea using single and dual beam flow cytometry. Deep Sea Res 35:425–440

    CAS  Google Scholar 

  • Olson RJ, Chisholm SW, Zettler ER, Armbrust EV (1990b) Pigments, size, and distribution of Synechococcus in the North Atlantic and Pacific Oceans. Limnol Oceanogr 35:45–58

    CAS  Google Scholar 

  • Olson RJ, Frankel SL, Chisholm SW, Shapiro HM (1983) An inexpensive flow cytometer for analysis of fluorescence signals in phytoplankton: chlorophyll and DNA distributions. J Exp Mar Biol Ecol 68:129–144

    CAS  Google Scholar 

  • Olson RJ, Shalapyonok AA, Sosik HM (2003) An automated submersible flow cytometer for pico- and nanophytoplankton: FlowCytobot. Deep Sea Res I 50:301–315

    Google Scholar 

  • Olson RJ, Sosik HM (2007) A submersible imaging-in-flow instrument to analyze nano- and microplankton: Imaging FlowCytobot. Limnol Oceanogr Meth 5:195–203

    Google Scholar 

  • Olson RJ, Sosik HM, Chekalyuk AM (1999) Photosynthetic characteristics of marine phytoplankton from pump-during-probe fluorometry of individual cells at sea. Cytometry 37:1–13

    CAS  Google Scholar 

  • Olson RJ, Sosik HM, Shalapyonok A (2000) Effects of iron enrichment on phytoplankton in the Southern Ocean during late summer: Active fluorescence and flow cytometric analyses. Deep Sea Res II 47:3181–3200

    CAS  Google Scholar 

  • Olson RJ, Vaulot D, Chisholm SW (1985) Marine phytoplankton distributions measured using shipboard flow cytometry. Deep Sea Res 32:1273–1280

    Google Scholar 

  • Olson RJ, Zettler ER, Anderson OK (1989) Discrimination of eukaryotic phytoplankton cell types from light scatter and autofluorescence properties measured by flow cytometry. Cytometry 10:636–643

    CAS  Google Scholar 

  • Olson RJ, Zettler ER, Chisholm SW (1991) Advances in oceanography through flow cytometry. In: Demers S (ed) Particle analysis in oceanography. Springer, Berlin, pp 351–399

    Google Scholar 

  • Olson RJ, Zettler ER, DuRand MD (1993) Phytoplankton analysis using flow cytometry. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, pp 175–186

    Google Scholar 

  • Ortyn WE, Hall BE, George TC, Frost K, Basiji DA, Perry DJ, Zimmermann CA, Coder D, Morrissey PJ (2006) Sensitivity measurement and compensation in spectral imaging. Cytometry Part A 69A:852–862

    Google Scholar 

  • Ortyn WE, Perry DJ, Venkatachalam V, Liang L, Hall BE, Frost K, Basiji DA (2007) Extended depth of field imaging for high speed cell analysis. Cytometry Part A 71A:215–231

    Google Scholar 

  • Palenik B, Haselkorn R (1992) Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing prokaryotes. Nature 16:265–167

    Google Scholar 

  • Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbio Mol Biol Rev 63:106–127

    CAS  Google Scholar 

  • Pel R, Floris V, Gons HJ, Hoogveld HL (2004) Linking flow cytometric cell sorting and compound-specific 13C-analysis to determine population-specific isotopic signtures and growth rates in cyanobacteria-dominated lake plankton. J Phycol 40:857–866

    CAS  Google Scholar 

  • Perry MJ, Porter SM (1989) Determination of the cross-section absorption coefficient of individual phytoplankton cells by analytical flow cytometry. Limnol Oceanogr 34:1727–1738

    CAS  Google Scholar 

  • Platt T (1989) Optimal utlization of flow cytometry. Cytometry 10:500

    CAS  Google Scholar 

  • Podar M, Abulencia CB, Walcher M, Hutchinson D, Zengler K, Garcia JA, Holland T, Cotton D, Hauser L, Keller M (2007) Targeted access to the genomes of low-abundance organisms in complex microbial communities. Appl Env Microbiol 73:3205–3214

    CAS  Google Scholar 

  • Reckermann M (2000) Flow sorting in aquatic ecology. Sci Mar 64:235–246

    Google Scholar 

  • Reckermann M, Colijn F (2000) Aquatic flow cytometry: achievements and prospects, Forward. Sci Mar 64:119–120

    Google Scholar 

  • Redfield AC (1958) On the biological control of chemical factors in the environment. Am Sci 46:205–221

    CAS  Google Scholar 

  • Rocap G, Distel D, Waterbury JB, Chisholm SW (2002) Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S–23S ribosomal DNA internal transcribed spacer sequences. Appl Env Microbiol 68:1180–1191

    CAS  Google Scholar 

  • Rocap G et al (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042–1047

    CAS  Google Scholar 

  • Rodríguez F, Derelle E, Guillou L, Le Gall F, Vaulot D, Moreau H (2005) Ecotype diversity in the marine picoeukaryotes Ostreococcus (Chlorophyta, Prasinophyceae). Environ Microbiol 7:853–859

    Google Scholar 

  • Rose JM, Caron DA, Sieracki ME, Poulton NJ (2004) Counting heterotrophic nanoplanktonic protists in cultures and in aquatic communities by flow cytometry. Aquat Microb Ecol 34:263–277

    Google Scholar 

  • Rutten TP, Sandee B, Hofman ART (2005) Phytoplankton monitoring by high performance flow cytometry: A successful approach? Cytometry 64A:16–26

    Google Scholar 

  • Rynearson TA, Armbrust EV (2005) Maintenance of clonal diversity during a spring bloom of the centric diatom Ditylum brightwellii. Mol Ecol 14:1631–1640

    Google Scholar 

  • Rynearson TA, Newton JA, Armbrust EV (2006) Spring bloom development, genetic variation, and population succession in the planktonic diatom Ditylum brightwellii. Limnol Oceanogr 51:1249–1261

    CAS  Google Scholar 

  • Sathyendranath S, Watts L, Devred E, Platt T, Caverhill C, Maass H (2004) Discrimination of diatoms from other phytoplankton using ocean-colour data. Mar Ecol Prog Ser 272:59–68

    Google Scholar 

  • Sekar R, Fuchs BM, Amann R, Pernthaler J (2004) Flow sorting of marine bacterioplankton after fluorescence in situ hybridization. Appl Env Microbiol 70:6210–6219

    CAS  Google Scholar 

  • Shalapyonok A, Olson RJ, Shalapyonok LS (2001) Arabian Sea phytoplankton during Southwest and Northeast Monsoons 1995: composition, size structure and biomass from individual cell properties measured by flow cytometry. Deep-Sea Res II 48:1231–1262

    Google Scholar 

  • Shalapyonok AA, Olson RJ, Shalapyonok LS (1998) Ultradian growth in Prochlorococcus spp. Appl Env Microbiol 64:1066–1069

    CAS  Google Scholar 

  • Shankle AM, Mayali X, Franks PJS (2004) Temporal patterns in population genetic diversity of Prorocentrum micans (Dinophyceae). J Phycol 40:238–247

    Google Scholar 

  • Shapiro HM (2003) Practical flow cytometry, 4th edn. Wiley-Liss, New York

    Google Scholar 

  • Sieracki CK, Sieracki ME, Yentsch CS (1998) An imaging-in-flow system for automated analysis of marine microplankton. Mar Ecol Prog Ser 168:285–296

    Google Scholar 

  • Søgaard M, Hansen DS, Fiandaca MJ, Stender H, Schønheyder HC (2007) Peptide nucleic acid fluorescence in situ hybridization for rapid detection of Klebsiella pneumoniae from positive blood cultures. J Med Microbiol 56:914–917

    Google Scholar 

  • Sosik HM, Chisholm SW, Olson RJ (1989) Chlorophyll fluorescence from single cells: Interpretation of flow cytometric signals. Limnol Oceanogr 34:1749–1761

    CAS  Google Scholar 

  • Sosik HM, Green RE, Pegau WS, Roesler CS (2001) Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring. J Geophys Res 106:9455–9472

    Google Scholar 

  • Sosik HM, Olson RJ (2002) Phytoplankton and iron limitation of photosynthetic efficiency in the Southern Ocean during late summer. Deep Sea Res I 49:1195–1216

    CAS  Google Scholar 

  • Sosik HM, Olson RJ (2007) Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry. Limnol Oceanogr Meth 5:204–216

    Google Scholar 

  • Sosik HM, Olson RJ, Neubert MG, Shalapyonok AA, Solow AR (2003) Growth rates of coastal phytoplankton from time-series measurements with a submersible flow cytometer. Limnol Oceanogr 48:1756–1765

    Google Scholar 

  • Stepanauskas R, Sieracki M (2007) Mathcin phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc Nat Acad Sci USA 104:9052–9057

    CAS  Google Scholar 

  • Takabayashi M, Lew K, Johnson A, Marchi AL, Dugdale R, Wilkerson FP (2006) The effect of nutrient availability and temperature on chain length of the diatom, Skeletonema costatum. J Plankton Res 28:831–840

    Google Scholar 

  • Thyssen M, Tarran GA, Zubkov MV, Holland RJ, Gregori G, Burkill PH, Denis M (2008) The emergence of automated high frequency flow cytometry: revealing temporal and spatial phytoplankton variability. J Plank Res 30:333–343

    Google Scholar 

  • Troussellier M, Courties C, Vaquer A (1993) Recent applications of flow cytometry in aquatic microbial ecology. Biol Cell 78:111–121

    CAS  Google Scholar 

  • Uitz J, Claustre H, Morel A, Hooker SB (2006) Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J Geophys Res 111:C08005. doi:10.1029/2005JC003207

    Google Scholar 

  • Urbach E, Chisholm SW (1998) Genetic diversity in Prochlorococcus populations flow cytometrically sorted from the Sargasso Sea and the Gulf Stream. Limnol Oceanogr 43:1615–1630

    CAS  Google Scholar 

  • Vaulot D, Courties C, Partensky F (1989) A simple method to preserved oceanic phytoplankton for flow cytometric analyses. Cytometry 10:629–635

    CAS  Google Scholar 

  • Vaulot D, Marie D (1999) Diel variability of photosynthetic picoplankton in the equatorial Pacific. J Geophys Res 104:3297–3310

    CAS  Google Scholar 

  • Vaulot D, Marie D, Olson RJ, Chisholm SW (1995) Growth of Prochlorococcus, a photosynthetic prokaryote, in the Equatorial Pacific Ocean. Science 268:1480–1482

    CAS  Google Scholar 

  • Vaulot D, Romari K, Not F (2002) Are autotrophs less diverse than heterotrophs in marine picoplankon? Trends Microbiol 10:266–267

    CAS  Google Scholar 

  • Veldhuis M, Kraay GW, Timmermans KR (2001) Cell death in phytoplankton: correlation between changes in membrane permeability, photosynthetic activity, pigmentation and growth. Eur J Phycol 36:167–177

    Google Scholar 

  • Veldhuis MJW, Kraay GW (2000) Application of flow cytometry in marine phytoplankton research: current applications and future perspectives. Sci Mar 64:121–134

    Google Scholar 

  • Vives-Rego J, Lebaron P, Nebe-von Caron G (2000) Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiol Rev 24:429–448

    CAS  Google Scholar 

  • Wallner G, Erhart R, Amann R (1995) Flow cytometric analysis of activated sludge with rRNA-targeted probes. Appl Env Microbiol 61:1859–1866

    CAS  Google Scholar 

  • Wallner G, Fuchs B, Spring S, Beisker W, Amann R (1997) Flow sorting of microorganisms for molecular analysis. Appl Env Microbiol 63:4223–4231

    CAS  Google Scholar 

  • Wang X, Chan RKY, Cheng ASK (2005) Underwater cytometer for in situ measurement of marine phytoplankton by a technique combining laser-induced fluorescence and laser Doppler velocimetry. Opt Lett 30:1087–1089

    Google Scholar 

  • West NJ, Scanlan DJ (1999) Niche-partitioning of Prochlorococcus populations in a stratified water column in the eastern North Atlantic Ocean. Appl Env Microbiol 65:2585–2591

    CAS  Google Scholar 

  • Wood AM, Horan PK, Muirhead K, Phinney DA, Yentsch CM, Waterbury JB (1985) Discrimination between types of pigments in marine Synechococcus spp. by scanning spectroscopy, epifluorescence microscopy, and flow cytometry. Limnol Oceanogr 30:1303–1315

    CAS  Google Scholar 

  • Worden AZ, Binder BB (2003a) Application of dilution experiments for measuring growth and mortality rates among Prochlorococcus and Synechococcus populations in oligotrophic environments. Aquat Microb Ecol 30:159–174

    Google Scholar 

  • Worden AZ, Binder BJ (2003b) Growth regulation of rRNA content in Prochlorococcus and Synechococcus (marine cyanobacteria) measured by whole-cell hybridization of rRNA-targeted peptide nucleic acids. J Phycol 39:527–534

    CAS  Google Scholar 

  • Worden AZ, Chisholm SW, Binder BJ (2000) In situ hybridization of Prochlorococcus and Synechococcus (marine cyanobacteria) spp. with rRNA-targeted peptide nucleic acid probes. Appl Env Microbiol 66:284–289

    CAS  Google Scholar 

  • Worden AZ, Nolan JK, Palenik B (2004) Assessing the dynamics and ecology of marine picophytoplankton: The importance of the eukaryotic component. Limnol Oceanogr 49:168–179

    CAS  Google Scholar 

  • Yentsch CM, Horan PK (1989) Cytometry in the aquatic sciences. Cytometry 10:497–499

    CAS  Google Scholar 

  • Yentsch CM et al (1983) Flow cytometry and cell sorting: A technique for analysis and sorting of aquatic particles. Limnol Oceanogr 28:1275–1280

    Google Scholar 

  • Yentsch CS, Phinney DA (1989) A bridge between ocean optics and microbial ecology. Limnol Oceanogr 34:1694–1705

    Google Scholar 

  • Zhang H, Bhattacharya D, Maranda L, Lin S (2008) Mitochondrial cob and cox1 and their mRNA editing in Dinophysis acuminata from Narragansett Bay, with special reference to the phylogenetic position of Dinophysis. Appl Env Microbiol 74:1546–1554

    CAS  Google Scholar 

  • Zhang K, Martiny AC, Reppas NB, Barry KW, Malek J, Chisholm SW, Church GM (2006) Sequencing genomes from single cells by polymerase cloning. Nature Biotech 24:680–686

    CAS  Google Scholar 

  • Zhu F, Massana R, Not F, Marie D, Vaulot D (2005) Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 52:79–92

    CAS  Google Scholar 

  • Zubkov MV, Burkhill PH (2006) Syringe pumped high speed flow cytometry of oceanic phytoplankton. Cytometry A 69A:1010–1019

    Google Scholar 

  • Zubkov MV, Burkhill PH, Topping JN (2007) Flow cytometric enumeration of DNA-stained oceanic planktonic protists. J Plankton Res 29:79–86

    CAS  Google Scholar 

  • Zubkov MV, Fuchs BM, Archer SD, Kiene RP, Amann R, Burkill PH (2001) Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. Environ Microbiol 3:304–311

    CAS  Google Scholar 

  • Zubkov MV, Fuchs BM, Tarran GA, Burkill PH, Amann R (2003) High rate of uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters. Appl Env Microbiol 69:1299–1304

    CAS  Google Scholar 

  • Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L, Vaulot D, Not F, Massana R, Uloa O, Scanlan DJ (2008) Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol 10:147–161

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge support from the US National Science Foundation and Gordon and Betty Moore Foundation. Brandon Carter, Raphael Kudela, and Peter Miller and Amnis Corp. graciously provided fluorescence images and Rhonda Marohl generated the sequence data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi M. Sosik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Sosik, H.M., Olson, R.J., Armbrust, E.V. (2010). Flow Cytometry in Phytoplankton Research. In: Suggett, D., Prášil, O., Borowitzka, M. (eds) Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. Developments in Applied Phycology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9268-7_8

Download citation

Publish with us

Policies and ethics