Skip to main content

Fluorescence as a Tool to Understand Changes in Photosynthetic Electron Flow Regulation

  • Chapter
  • First Online:
Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications

Part of the book series: Developments in Applied Phycology ((DAPH,volume 4))

Abstract

This chapter investigates the use of chlorophyll a fluorescence to better understand changes in the regulation of photosynthetic electron transport. It describes the different electron pathways utilised by photosynthetic organisms, including pathways used in photosynthesis as well as alternative electron cycling (AEC). The major photoprotective processes are described, in particular, non-photochemical quenching (NPQ) and its three components, energy-dependent quenching (qE), state-transition quenching (qT), and photoinhibition (qI). Fluorescence and NPQ responses to light stress are compared across a higher plant, diatom and cyanobacteria. Photosynthesis is a complex interaction of complementary processes making the identification and isolation of a particular photosynthetic pathway or process inherently difficult. Therefore, we describe the use of chemicals which allow for the differentiation of mechanistic photosynthetic processes, such as electron transport pathways, CO2 fixation and the use of trans-thylakoid proton gradients, which can be effectively understood and quantified using chlorophyll fluorescence detection techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    CAS  Google Scholar 

  • Baena-Gonzalez E, Allahverdiyeva Y, Svab Z Maliga P, Josse EM, Kuntz M, Maenpää, Aro EM (2003) Deletion of the tobacco plastid psbA gene triggers an upregulation of the thylakoid-associated NAD(P)H dehydrogenase complex and the plastid terminal oxidase (PTOX). Plant J 35:704–716

    CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    CAS  Google Scholar 

  • Bailey S, Mann NH, Robinson C, Scanlan P (2005) The occurrence of rapidly reversible non-photochemical quenching of chlorophyll a fluorescence in cyanobacteria. FEBS Lett 579:275–280

    CAS  Google Scholar 

  • Bailey S, Melis A, Mackey KRM, Cardol P, van Dijken FGG, Berg G, Arrigo KR, Shrager J, Grossman A (2008) Alternative photosynthetic electron flow to oxygen in marine Synechococcus. Biochim Biophys Acta 1777:269–276

    CAS  Google Scholar 

  • Bukhov NG, Heber U, Wiese C, Shuvalov VA (2001) Energy dissipation in photosyntesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of ­photosystem II or from the reaction center? Planta 212:749–758

    CAS  Google Scholar 

  • Bukhov NG, Sridharan G, Egorova EA, Carpentier R (2003) Interaction of exogenous quinones with membranes of higher plant chloroplasts: modulation of quinone capacities as photochemical and non-photochemical quenchers of energy in Photosystem II during light-dark transitions. Biochim Biophys Acta - Bioenergetics 1604:115–123

    CAS  Google Scholar 

  • Campbell D, Hurry V, Clarke AK, Gustafsson P, Oquist G (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev 62:667–683

    CAS  Google Scholar 

  • Canaani O, Havaux M (1990) Evidence for a biological role in photosynthesis for Cytochrome b-559-a component of Photosystem II reaction center. PNAS 87:9295–9299

    CAS  Google Scholar 

  • Casper-Lindley C, Bjorkman O (1998) Fluorescence quenching in four unicellular algae with different light-harvesting and xanthophyll-cycle pigments. Photosynth Res 56:277–289

    CAS  Google Scholar 

  • Cleland RE, Bendall DS (1992) Photosystem I cyclic electron transport: measurement of ferredoxin-plastoquinone reductase activity. Photosynth Res 34:409–418

    CAS  Google Scholar 

  • Cogdell RJ (2006) The structural basis of non-photochemical quenching revealed? Trends Plant Sci 11:59–60

    CAS  Google Scholar 

  • Cournac L, Redding K, Ravenel J, Rumeau D, Josse EM, Kuntz M, Peltier G (2000) Electron flow between photosystem II and oxygen in chloroplasts of photosystem I-deficient algae is mediated by a quinol oxidase involved in chlororespiration. J Biol Chem 275:17256–17262

    CAS  Google Scholar 

  • Cramer WA, Zhang H, Yan J, Kurisu G, Smith JL (2006) Transmembrane traffic in the Cytochrome b6 f Complex. Annu Rev Biochem 75:769–790

    CAS  Google Scholar 

  • Dal Bosso C, Lezhneva L, Biehl A, Leister D, Strotmann H, Wanner G, Meurer J (2004) Inactivation of the chloroplast ATP synthase g subunit results in high non-photochemical fluorescence quenching and altered nuclear gene expression in Arabidopsis thaliana. J Biol Chem 279:1060–1069

    Google Scholar 

  • Dall’Osto L, Caffarri S, Bassi R (2005) A mechanism of non-photochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26. Plant Cell 17:1217–1232

    Google Scholar 

  • Dan Hess F (2000) Review: light-dependent herbicides: an overview. Weed Sci 48:160–170

    Google Scholar 

  • Delphin E, Duval JC, Etienne AL, Kirilovsky D (1998) ΔpH-dependent photosystem II fluorescence quenching induced by saturating, multiturnover pulses in red algae. Plant Physiol 118:103–113

    CAS  Google Scholar 

  • Demmig-Adams B, Adams WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21

    CAS  Google Scholar 

  • Dominici P, Caffarri S, Armenante F, Ceoldo S, Crimi M, Bassi R (2002) Biochemical properties of the PsbS subunit of photosystem II either purified from chloroplast or recombinant. J Biol Chem 25:22750–22758

    Google Scholar 

  • Durnford DG, Prasil O, Escoubas JM, Falkowski P (1998) Assessing the potential for chloroplast redox regulation of nuclear gene expression. Meth Enzymol 297:220–234

    CAS  Google Scholar 

  • Eisenstadt D, Ohad I, Keren N, Kaplan A (2008) Changes in the photosynthetic reaction centre II in the diatom Phaeodactylum tricornutum result in non-photochemical fluorescence quenching. Environ Microbiol 10:1997–2007

    CAS  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edition. Princeton University Press, Princeton, p 484

    Google Scholar 

  • Falkowski PG, Wyman K, Ley AC, Mauzerall DC (1986) Relationship of steady-state photosynthesis to fluorescence in eukaryotic algae. Biochim Biophys Acta 849:183–192

    CAS  Google Scholar 

  • Finazzi G (2005) The central role of the green alga Chlamydomonas reinhardtii in revealing the mechanism of state transitions. J Exp Bot 56:383–388

    CAS  Google Scholar 

  • Finazzi G, Johnson GN, Dallosto L, Joliot P, Wollman F-A, Bassi R (2004) A zeaxanthin-independent nonphotochemical quenching mechanism localized in the photosystem II core complex. Proc Nat Acad Sci USA 101:12375–12380

    CAS  Google Scholar 

  • Finazzi G, Johnson GN, Dall’Osto L, Zito F, Bonente G, Bassi R, Wollman F-A (2006) Non-photochemical quenching of chlorophyll fluorescence in Chlamydomonas reinhardtii. Biochemistry 45:1490–1498

    CAS  Google Scholar 

  • Fork DC, Herbert SK, Malkin S (1991) Light energy distribution in the brown alga Macrocystis pyrifera (giant kelp). Plant Physiol 95:731–739

    CAS  Google Scholar 

  • Frenkel M, Bellafiore S, Rochaix J-D, Jansson S (2007) Hierarchy amongst photosynthetic acclimation responses for plant fitness. Physiol Plant 129:455–459

    CAS  Google Scholar 

  • Garcia-Mendoza E, Colombo-Pallotta MF (2007) The giant kelp Macrocystis pyrifera presents a different non-photochemical quenching control than in higher plants. New Phytol 173:526–536

    CAS  Google Scholar 

  • Gilbert M, Richter M, Wilhelm C (2000) Bio-optical modelling of oxygen evolution using in-vivo fluorescence: comparison of measured and calculated P-I curves in four representative phytoplankton species. J Plant Physiol 157:307–314

    CAS  Google Scholar 

  • Goss R, Ann Pinto E, Wilhelm C, Richter M (2006) The importance of a highly active and delta-pH-regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cycle containing algae. J Plant Physiol 163:1008–1021

    CAS  Google Scholar 

  • Heber U (2002) Irrungen, Wirrungen? The Mehler reaction in relation to cyclic electron transport in C3 plants. Photosynth Res 73:223–231

    CAS  Google Scholar 

  • Hill R, Frankart C, Ralph PJ (2005) Impact of bleaching conditions on the components of non-photochemical quenching in the zooxanthellae of a coral. J Exp Mar Biol Ecol 322:83–92

    CAS  Google Scholar 

  • Holt NE, Zigmantas D, Valkunas L, Li XP, Niyogi KK, Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307:433–436

    CAS  Google Scholar 

  • Hormann H, Neubauer C, Asada K, Schreiber U (1993) Intact chloroplasts display pH 5 optimum of O2-reduction in the absence of methyl viologen: indirect evidence for a regulatory role of superoxide protonation. Photosynth Res 37:69–80

    CAS  Google Scholar 

  • Horton P, Hague A (1988) Studies on the induction of chlorophyll fluorescence in isolated barley protoplasts IV. Resolution of non-photochemical quenching. Biochim Biophys Acta 932:107–115

    CAS  Google Scholar 

  • Jakob T, Schreiber U, Kirchesch V, Langner U, Wilhelm C (2005) Estimation of chlorophyll content and daily primary production of the major algal groups by means of multiwavelength-excitation PAM chlorophyll fluorometry: performance and methodological limits. Photosynth Res 83:343–361

    CAS  Google Scholar 

  • Jakob T, Wagner H, Stehfest K, Wilhelm C (2007) Uncoupling of growth rates and biomass production under nitrate limitation in combination with dynamic light conditions in the diatom Phaeodactylum tricornutum. J Exp Bot 58:2101–2113

    CAS  Google Scholar 

  • Joët T, Cournac L, Horváth EM, Medgyesy P, Peltier G (2001) Increased sensitivity of photosynthesis to antimycin A induced by inactivation of the chloroplast ndhB gene Evidence for a participation of the NADH-dehydrogenase complex to cyclic electron flow around photosystem I. Plant Physiol 125:1919–1929

    Google Scholar 

  • Johnson GN, Young AJ, Scholes JD, Horton P (1993) The dissipation of excess excitation energy in British plant species. Plant Cell Env 16:673–679

    CAS  Google Scholar 

  • Juneau P, Harrison PJ (2005) Comparison by PAM fluorometry of photosynthetic activity of nine marine phytoplankton grown under identical conditions. Photochem Photobiol 81:649–653

    CAS  Google Scholar 

  • Kirilovsky D (2007) Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical quenching mechanism. Photosynth Res 93:7–16

    CAS  Google Scholar 

  • Kleczkowski LA (1994) Glucose activation and metabolism through UDP-glucose pyrophosphorylase in plants. Phytochemistry 37:1507–1515

    CAS  Google Scholar 

  • Kolber ZS, Prasil O, Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim Biophys Acta 1367:88–106

    CAS  Google Scholar 

  • Kornyeyev D, Holaday AS, Logan BA (2004) Minimization of the photon energy absorbed by ‘closed’ reaction centers of photosystem 2 as a photoprotective strategy in higher plants. Photosynthetica 42:377–386

    CAS  Google Scholar 

  • Kroon BM, Thoms S (2006) From electron to biomass: a mechanistic model to describe phytoplankton photosynthesis and steady state growth rates. J Phycol 42:593–609

    CAS  Google Scholar 

  • Kufryk GI, Vermaas WFJ (2006) Sll1717 Affects the redox State of the plastoquinone pool by modulating quinol oxidase activity in thylakoids. J Bact 188:1286–1294

    CAS  Google Scholar 

  • Külheim C, Agren J, Jansson S (2002) Rapid regulation of light harvesting and plant fitness in the field. Science 297:91–93

    Google Scholar 

  • Lavaud J (2007) Fast regulation of photosynthesis in diatoms: Mechanisms, evolution and ecophysiology. Funct Plant Sci Biotech 1:267–287

    Google Scholar 

  • Lavaud J, Strzepek RF, Kroth PG (2007) Photoprotection capacity differs among diatoms: Possible consequences on the spatial distribution of diatoms related to fluctuations in the underwater light climate. Limnol Oceanogr 52:1188–1194

    CAS  Google Scholar 

  • Lavaud J, Rousseau B, Etienne A-L (2004) General features of photoprotection by energy dissipation in planktonic diatoms (Bacillariophyceae). J Phycol 40:130–137

    Google Scholar 

  • Lavaud J, Rousseau B, van Gorkom HJ, Etienne A-L (2002) Influence of the diadinoxanthin pool size on photoprotection in a marine planktonic diatom Phaeodactylum tricornutum. Plant Physiol 129:1398–1406

    CAS  Google Scholar 

  • Ledford HK, Niyogi KK (2005) Singlet oxygen and photo-oxidative stress management in plants and algae. Plant Cell Environ 28:1037–1045

    CAS  Google Scholar 

  • Li X-P, Phippard A, Pasari J, Niyogi KK (2002) Structure-function analysis of photosystem II subunit S (PsbS) in vivo. Funct Plant Biol 29:1131–1139

    Google Scholar 

  • Logan BA, Adams WWIII, Demmig-Adams (2007) Avoiding common pitfalls of chlorophyll fluorescence analysis under field conditions. Funct Plant Biol 34:853–859

    CAS  Google Scholar 

  • Mackey K, Paytan A, Grossman A, Bailey S (2008) A photosynthetic strategy for coping in a high-light, low nutrient environment. Limnol Oceanogr 53:900–913

    CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659–668

    CAS  Google Scholar 

  • McCauley S, Melis A, Tang G, Arnon D (1987) Protonophores Induce Plastoquinol Oxidation and Quench Chloroplast Fluorescence: evidence for a cyclic, proton-conducting pathway in oxygenic photosynthesis. Proc Nat Acad Sci USA 84:8424–8428

    CAS  Google Scholar 

  • Mehler AH (1951) Studies on reactions of illuminated chloroplasts I. Mechanism of the reduction of oxygen and other Hill reagents. Arch Biochem Biophys 33:65–77

    CAS  Google Scholar 

  • Miller AG, Canvin DT (1989) Glycoaldehyde inhibits CO2 fixation in the cyanobacterium Synechococcus UTEX 625 without inhibiting the accumulation of inorganic carbon or the associated quenching of chlorophyll a fluorescence. Plant Physiol 91:1044–1049

    CAS  Google Scholar 

  • Miller AG, Espie GS, Canvin DT (1988) Active transport of CO2 by the cyanobacterium Synechococcus UTEX 625. Plant Physiol 86:677–683

    CAS  Google Scholar 

  • Miyake C, Horiguchi S, Makino A, Shinzaki Y, Yamamoto H, Tomizawa K-I (2005) Effects of light intensity on cyclic electron flow around PSI and its relationship to non-photochemical quenching of Chl fluorescence in tobacco leaves. Plant Cell Physiol 46:1819–1830

    CAS  Google Scholar 

  • Moreland DE (1980) Mechanisms of action of herbicides. Annu Rev Plant Physiol 31:597–638

    CAS  Google Scholar 

  • Moss DA, Bendall DS (1984) Cyclic electron transport in chloroplasts. The Q-cycle and the site of action of antimycin. Biochim Biophys Acta 767:389–395

    CAS  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Google Scholar 

  • Mullineaux CW, Emlyn-Jones D (2005) State-transitions: and example of acclimation to low-light stress. J Exp Bot 56:389–393

    CAS  Google Scholar 

  • Munekage Y, Takeda S, Endo T, Jahns P, Hashimoto T, Shikanai T (2001) Cytochrome b6f mutation specifically affects thermal dissipation of absorbed light energy in Arabidopsis. Plant J 28:351–359

    CAS  Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582

    CAS  Google Scholar 

  • Neubauer C, Yamamoto HY (1992) Mehler-peroxidase reaction mediates zeaxanthin formation and zeaxanthin-related fluorescence quenching in intact chloroplasts. Plant Physiol 99:1354–1361

    CAS  Google Scholar 

  • Nixon PJ, Mullineaux CW (2001) Regulation of photosynthetic electron transport. In: Aro E-M, Andersson B (eds) Regulation of photosynthesis. Kluwer, Dordrecht, pp 533–555

    Google Scholar 

  • Niyogi KK (2000) Safety valves for photosynthesis. Curr Opin Plant Biol 3:455–460

    CAS  Google Scholar 

  • Niyogi KK, Li XP, Rosenberg V, Jung H-S (2005) Is PsbS the site of non-photochemical quenching in photosynthesis? J Exp Bot 56:375–382

    CAS  Google Scholar 

  • Owens TG (1986) Light-harvesting function in the diatom Phaeodactylum tricornutum II. A response to excess light energy. xPlant Physiol 80:739–746

    CAS  Google Scholar 

  • Oxborough K, Horton P (1987) Characterization of the effects of Antimycin A upon high energy state quenching of chlorophyll fluorescence (qE) in spinach and pea chloroplasts. Photosynth Res 12:119–128

    CAS  Google Scholar 

  • Pascal AA, Zhenfeng L, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang W, Ruban A (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436:134–137

    CAS  Google Scholar 

  • Peltier G, Cournac L (2002) Chlororespiration. Annu Rev Plant Physiol Plant Mol Biol 53:523–550

    CAS  Google Scholar 

  • Peon J, Tan X, Hoerner D, Xia C, Luk YF, Kohler B (2001) Excited state dynamics of methyl viologen. Ultrafast photoreduction in methanol and fluorescence in acetonitrile. J Phys Chem 105:5768–5777

    CAS  Google Scholar 

  • Perkins R, Mouget J-L, Lefebvre S, Lavaud J (2006) Light response curve methodology and possible implications in the application of chlorophyll fluorescence to benthic diatoms. Mar Biol 149:703–712

    Google Scholar 

  • Pfannschmidt T (2005) Acclimation to varying light qualities: toward the functional relationship of state transitions and adjustment of photosystem stochiometry. J Phycol 41:723–725

    Google Scholar 

  • Prasil O, Kolber Z, Berry JA, Falkowski PG (1996) Cyclic electron flow around PSII in vivo. Photosynth Res 48:395–410

    CAS  Google Scholar 

  • Pressman BC, Harris EJ, Jagger WC, Johnson JH (1967) Antibiotic-mediated transport of alkali ions across lipid bilayers. Proc Nat Acad Sci USA 58:1949–1956

    CAS  Google Scholar 

  • Ralph PJ, Polk S, Moore KA, Orth RJ, Smith WA (2002) Operation of the xanthophyll cycle in the seagrass Zostera marina in response to variable light. J Exp Mar Biol Ecol 271:189–207

    CAS  Google Scholar 

  • Rich P, Madgwick S, Moss D (1991) The interaction of duroquinol, DBMIB and NQNO with the chloroplast cytochrome bf complex. Biochim Biophys Acta 1058:312–328

    CAS  Google Scholar 

  • Rotatore C, Lew RR, Colman B (1992) Active uptake of CO2 during photosynthesis in the green alga Eremosphaera viridis is mediated by a CO2-ATPase. Planta 188:539–545

    CAS  Google Scholar 

  • Ruban AV, Johnson MP (2009) Dynamics of higher plant photosystem cross-section associated with state-transitions. Photosynth Res 99:173–183

    CAS  Google Scholar 

  • Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–579

    CAS  Google Scholar 

  • Ruban VA, Lavaud J, Rousseau B, Guglielmi G, Horton P, Etienne A-L (2004) The super-excess energy dissipation in diatom algae: comparative analysis with higher plants. Photosynth Res 82:165–175

    CAS  Google Scholar 

  • Serra T, Borrego C, Quintana X, Calderer R, Lopez R, Colomer J (2009) Quantification of the effect of nonphotochemical quenching on the determination of in vivo chl a from phytoplankton along the water column of a freshwater reservoir. Photochem Photobiol 85:321–331

    CAS  Google Scholar 

  • Shelp BJ, Canvin DT (1984) Evidence for bicarbonate accumulation by Anacystis nidulans. Can J Bot 62:1398–1403

    CAS  Google Scholar 

  • Shyam R, Raghavendra AS, Sane PV (1993) Role of dark respiration in photoinhibition of photosynthesis and its reactivation in the cyanobacterium Anacystis nidulans. Physiol Plant 88:446–452

    CAS  Google Scholar 

  • Sicher RC (1984) Glycolaldehyde inhibition of photosynthetic carbon assimilation by isolated chloroplasts and protoplasts. In: Sybesma C (ed) Advances in photosynthetic research, vol III. Martinus Nijhoff/Dr W Junk, The Hague, pp 413–416

    Google Scholar 

  • Sigalat C, Haraux F, de Kouchkovsky Y (1993) Force-flow relationship in lettuce thylakoids. 1. Strict control of election flow by internal pH. Biochemistry 32:10201–10208

    CAS  Google Scholar 

  • Simonis W, Urbach W (1973) Photophosphorylation in vivo. Annu Rev Plant Physiol 24:89–114

    CAS  Google Scholar 

  • Singh K, Shyam R, Sane PV (1996) Reactivation of photosynthesis in the photoinhibited green alga Chlamydomonas reinhardtii: role of dark respiration and of light. Photosynth Res 49:11–20

    CAS  Google Scholar 

  • Standfuss J, van Scheltinga ACT, Lamborghini M, Kühlbrandt W (2005) Mechanisms of photoprotection and non-photochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J 24:919–928

    CAS  Google Scholar 

  • Stehfest K, Toepel J, Wilhelm C (2005) The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiol Biochem 43:717–726

    CAS  Google Scholar 

  • Stokes DM, Walker DA (1972) Photosynthesis by isolated chloroplasts. Inhibition by DL-glyceraldehyde of carbon dioxide fixation. Biochem J 128:1147–1157

    CAS  Google Scholar 

  • Stroch M, Spunda V, Kurasova I (2004) Non-radiative dissipation of absorbed excitation energy within photosynthetic apparatus of higher plants. Photosynthetica 42:323–337

    CAS  Google Scholar 

  • Suggett D, Kraay G, Holligan P, Davey M, Aiken J, Geider R (2001) Assessment of photosynthesis in a spring cyanobacterial bloom by use of a fast repetition rate fluorometer. Limnol Oceanogr 46:802–810

    Google Scholar 

  • Szabo I, Bergantino E, Giacometti GM (2005) Light and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo-oxidation. EMBO Rep 6:629–634

    CAS  Google Scholar 

  • Tagawa K, Tsujimoto HY, Arnon DI (1963) Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. Proc Nat Acad Sci USA 49:567–572

    CAS  Google Scholar 

  • Toepel J, Domin A, Gilbert M, Wilhelm C (2004) Quantitative Estimates to convert photosynthetic electron transport rates into biomass. Arch Hydrobiol 160:515–526

    CAS  Google Scholar 

  • Trebst A (1980) Inhibitors in electron flow: tools for the functional and structural localization of carriers and energy conservation sites. Meth Enzymol 69:675–715

    CAS  Google Scholar 

  • Trebst A (2007) Inhibitors in the functional dissection of the photosynthetic electron transport system. Photosynth Res 92:217–224

    CAS  Google Scholar 

  • Tyystjarvi E, Koski A, Keranen M, Nevalainen O (1999) The Krautsky curve is a built-in barcode. Biophys J 77:1159–1167

    CAS  Google Scholar 

  • Velthuys B (1981) Electron-dependent competition between plastoquinone and inhibitors for binding to photosystem II. FEBS Lett 126:277–281

    CAS  Google Scholar 

  • Wagner H, Jakob T, Wilhelm C (2005) Balancing the energy flow from captured light to biomass under fluctuating light conditions. New Phytol 169:95–108

    Google Scholar 

  • Wagner H, Gilbert M, Goss R, Wilhelm C (2006) Light emission originating from photosystem II radical pair recombination is sensitive to zeaxanthin related non-photochemical quenching (NPQ). J Photochem Photobiol 83:172–179

    CAS  Google Scholar 

  • Wilhelm C, Duval JC (1990) Fluorescence induction kinetics as a tool to detect chlororespiratorian activity in the prasinophycean alga Mantoniella squamata. Biochim Biophys Acta 1016:197–202

    CAS  Google Scholar 

  • Wilhelm C, Wild A (1984) The variability of the photosynthetic unit in Chlorella II. The effect of light intensity and cell development on photosynthesis, P-700 and cytochrome f in homocontinuous and synchronous cultures of Chlorella. J Plant Physiol 115:124–135

    Google Scholar 

  • Zhu S-H, Green BR (2008) Light-harvesting and photoprotection in diatoms: Identification and expression of L818-like proteins. In: Allen J-F, Gantt, E, Golbeck JH, Osmond B (eds) Photosynthesis. Energy from the Sun: 14th International Congress on Photosynthesis. Springer, Dordrecht, pp 261–264

    Google Scholar 

Download references

Acknowledgement

PR thanks the Australian Research Council for financial support. CW and TJ thank the Deutsche Forschungsgemeinschaft for financial support Wi 764/12. JL thanks the Centre National de la Recherche Scientifique (CNRS), the Agence Nationale de la Recherche (ANR program VasiRéMi) and the Deutsche Forschungsgemeinschaft (DFG, grant LA2368/2-1) for their financial support. Ross Hill is thanked for editorial comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Ralph .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Ralph, P.J., Wilhelm, C., Lavaud, J., Jakob, T., Petrou, K., Kranz, S.A. (2010). Fluorescence as a Tool to Understand Changes in Photosynthetic Electron Flow Regulation. In: Suggett, D., Prášil, O., Borowitzka, M. (eds) Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. Developments in Applied Phycology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9268-7_4

Download citation

Publish with us

Policies and ethics