Skip to main content

Chlorophyll Fluorescence Applications in Microalgal Mass Cultures

  • Chapter
  • First Online:
Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications

Part of the book series: Developments in Applied Phycology ((DAPH,volume 4))

Abstract

Chlorophyll (Chl) fluorescence has become one of the most common and useful techniques in photosynthetic field research. Its non-invasiveness, sensitivity and the wide availability of reliable instruments, also makes it a convenient and suitable technique in microalgal biotechnology to monitor a culture’s photosynthetic performance. Experimentally, homogenous microalgal cultures in suspension have also been ideal objects in photosynthetic studies. For the purpose of this book we summarised results of experiments since the 1990s that have pioneered the practical use of Chl fluorescence methods to monitor the physiological status of fast-growing microalgal mass cultures, optimising and estimating biomass productivity or finding marker processes of certain compound synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Baker NR (2008) Chlorophyll Fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  Google Scholar 

  • Behrenfeld MJ, Prasil O, Kolber ZS, Babin M, Falkowski PG (1998) Compensatory changes in photosystem II electron turnover rates protect photosynthesis from photoinhibition. Photosynth Res 58:259–268

    Article  CAS  Google Scholar 

  • Ben-Amotz A (2004) Industrial production of microalgal cell-mass and secondary products – Major industrial species: Dunaliella. In: Richmond A (ed) Handbook of microalgal mass cultures. Blackwell Science, Oxford, pp 273–280

    Google Scholar 

  • Benemann JR, Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. Final report. US DOE http://www.osti.gov/bridge/servlets/purl/493389-FXQyZ2/webviewable/493389.pdf

    Book  Google Scholar 

  • Bilger W, Björkman O (1990) Role of xanthophyll in photoprotection elucidated by measurement of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    Article  CAS  Google Scholar 

  • Boardman NK (1980) Energy from the biological conversion of solar energy. Phil Trans R Soc London A 295:477–489

    Article  CAS  Google Scholar 

  • Borowitzka MA (2005) Carotenoid production using microorganisms. In: Cohen Z, Ratledge C (eds) Single Cell Oils. AOCS Press, Champaign, IL, pp 124–137

    Google Scholar 

  • Bradbury M, Baker NR (1984) A quantitative determination of photochemical and nonphotochemical quenching during the slow phase of the chlorophyll fluorescence induction curve of bean leaves. Biochim Biophys Acta 765:275–81

    Article  CAS  Google Scholar 

  • Büchel C, Wilhelm C (1993) In vivo analysis of slow chlorophyll fluorescence induction kinetics in algae: progress problems and perspectives. Photochem Photobiol 58:137–148

    Article  Google Scholar 

  • Casper-Lindley C, Björkman O (1998) Fluorescence quenching in four unicellular algae with different light-harvesting and xanthophyll-cycle pigments. Photosynth Res 56:277–289

    Article  CAS  Google Scholar 

  • Demmig B, Winter K, Krüger A, Czygan FC (1987) Photoinhibition and zeaxanthin formation in intact leaves. Plant Physiol 84:218–224

    Article  CAS  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants. A role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020:1–24

    Article  CAS  Google Scholar 

  • Diner BA (1998) Photosynthesis: molecular biology of energy capture. Methods Enzymol 297:337–360

    Article  CAS  Google Scholar 

  • Finazzi G, Johnson GN, Dall’Osto L, Joliot P, Wollman F-A, Bassi R (2004) A zeaxanthin-independent nonphotochemical quenching mechanism localized in the photosystem II core complex. Proc Nat Acad Sci USA 101:12375–12380

    Article  CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Gilmore AM, Yamamoto HY (1991) Zeaxanthin formation and energy dependent fluorescence quenching in pea chloroplasts under artificially mediated linear and cyclic electron transport. Plant Physiol 96:635–643

    Article  CAS  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160

    Article  CAS  Google Scholar 

  • Grobbelaar JU (2007) Photosynthetic characteristics of Spirulina platensis grown in commercial-scale open outdoor raceway ponds: what do the organisms tell us? J Appl Phycol 19:591–598

    Article  CAS  Google Scholar 

  • Hofstraat JW, Peeters JCH, Snel JFH, Geel C (1994) Simple determination of photosynthetic efficiency and photoinhibition of Dunaliella tertiolecta by saturating pulse fluorescence measurements. Mar Ecol Prog Ser 103:187–196

    Article  Google Scholar 

  • Jin ES, Yokthongwattana K, Polle JEW, Melis A (2003) Role of the reversible xanthophylls cycle in the Photosystem II damage and repair cycle in Dunaliella salina. Plant Physiol 132:352–364

    Article  CAS  Google Scholar 

  • Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta 376:105–115

    Article  CAS  Google Scholar 

  • Klughammer C, Schreiber U (2008) Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the saturation pulse method. PAM Application Notes 1: 27–35. http://www.walz.com/e_journal/pdfs/PAN078007.pdf

    Google Scholar 

  • Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protecting mechanisms. Physiol Plant 74:566–574

    Article  CAS  Google Scholar 

  • Kirilovsky D (2007) Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-­photochemical-quenching mechanism. Photosynth Res 93:7–16

    Article  CAS  Google Scholar 

  • Lu CM, Vonshak A (1999) Photoinhibition in outdoor Spirulina platensis cultures assessed by polyphasic chlorophyll fluorescence transients. J Appl Phycol 11:355–359

    Article  CAS  Google Scholar 

  • Masojídek J, Torzillo G, Koblížek M, Kopecký J, Bernardini P, Sacchi A, Komenda J (1999) Photoadaptation of two members of the Chlorophyta (Scenedesmus and Chlorella) in laboratory and outdoor cultures: changes in chlorophyll fluorescence quenching and the xanthophyll cycle. Planta 209:126–135

    Article  Google Scholar 

  • Masojídek J, Torzillo G, Kopecký J, Koblížek M, Nidiaci L, Komenda J, Lukavská A, Sacchi A (2000) Changes in chlorophyll fluorescence quenching and pigment composition in the green alga Chlorococcum sp. grown under nitrogen deficiency and salinity stress. J Appl Phycol 12:417–426

    Article  Google Scholar 

  • Masojídek J, Grobbelaar JU, Pechar L, Koblížek M (2001) Photosystem II electron transport rate and oxygen production in natural waterblooms of freshwater cyanobacteria during the diel cycle. J Plankton Res 23:57–66

    Article  Google Scholar 

  • Masojídek J, Sergejevová M, Rottnerová K, Jirka V, Korečko J, Kopecký J, Zaťková I, Torzillo G, Štys D (2009) A two-stage solar photobioreactor for cultivation of microalgae based on solar concentrators. J Appl Phycol 21:55–63

    Article  Google Scholar 

  • Masojídek J, Koblížek M, Torzillo G (2004a) Photosynthesis in microalgae. In: Richmond A (ed) Handbook of microalgal mass cultures. Blackwell Science, Oxford, pp 20–39

    Google Scholar 

  • Masojídek J, Kopecký J, Koblížek M, Torzillo G (2004b) The xanthophyll cycle in green algae (Chlorophyta): its role in the photosynthetic apparatus. Plant Biol 6:342–349

    Article  Google Scholar 

  • Masojídek J, Sergejevová M, Rottnerová K, Jirka V, Korečko J, Kopecký J, Zaťková I, Torzillo G, Štys D (2009) A two-stage solar photobioreactor for cultivation of microalgae based on solar concentrators. J Appl Phycol 21:55–63

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659–668

    Article  CAS  Google Scholar 

  • Neale J (1987) Algal photoinhibition and photosynthesis in the aquatic environment. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Elsevier Science, Amsterdam, pp 39–65

    Google Scholar 

  • Nedbal L, Tichy V, Xiong F, Grobbelaar JU (1996) Microscopic green algae and cyanobacteria in high-frequency intermittent light. J Appl Phycol 8:325–333

    Article  CAS  Google Scholar 

  • Neubauer C, Schreiber U (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination. I. Saturation characteristics and partial control by the Photosystem II acceptor side. Z Naturforsch 42c:1246–1254

    CAS  Google Scholar 

  • Pirt SJ (1986) The thermodynamic efficiency (quantum demand) and dynamics of photosynthetic growth. New Phytol 102:3–37

    Article  Google Scholar 

  • Prášil O, Kolber Z, Berry JA, Falkowski PG (1996) Cyclic electron flow around photosystem II in vivo. Photosynth Res 48:395–410

    Article  Google Scholar 

  • Pulz O, Scheibenboden K, Gross W (2001) Biotechnology with cyanobacteria and microalgae. In: Reed G (ed) Special processes: biotechnology, vol 10. Wiley-VCH, Weinheim, pp 107–136

    Google Scholar 

  • Ramus J (1981) The capture and transduction of light energy. In: Lobban CS, Wynne MJ (eds) The biology of seaweeds. Blackwell Scientific, Oxford, pp 458–92

    Google Scholar 

  • Richmond A (2000) Microalgal biotechnology at the turn of the millenium: a personal view. J Appl Phycol 12:441–451

    Article  Google Scholar 

  • Richmond A (2004) Biological principles of mass cultivation. In: Richmond A (ed) Handbook of microalgal mass cultures. Blackwell Science, Oxford, pp 125–177

    Google Scholar 

  • Schreiber U (2004) Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 279–319

    Chapter  Google Scholar 

  • Schreiber U, Neubauer C (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: II. Partial control by the photosystem II donor side and possible ways of interpretation. Z Naturforsch 42c:1255–1264

    CAS  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and nonphotochemical fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  Google Scholar 

  • Schreiber U, Endo T, Mi H, Asada K (1995) Quenching analysis of chlorophyll fluorescence by the saturation pulse method: particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol 36:873–882

    CAS  Google Scholar 

  • Schreiber U, Bilger W, Hormann H, Neubauer C (1998) Chlorophyll fluorescence as a diagnostic tool: basics and some aspects of practical relevance. In: Raghavendra AS (ed) Photosynthesis: a comprehensive treatise. Cambridge University Press, Cambridge, pp 320–334

    Google Scholar 

  • Srivastava AM, Strasser RJ, Govindjee (1999) Greening of pea leaves: parallel measurement of 77K emission spectra, OJIP chlorophyll a fluorescence transient, period four oscillation of the initial fluorescence level, delayed light emission, and P700. Photosynthetica 37:365–392

    Article  CAS  Google Scholar 

  • Strasser BJ, Strasser RJ (1995) Measuring fast fluorescence transients to address environmental questions: the JIP test. In: Mathis P (ed) Photosynthesis from light to biosphere, vol 5. Kluwer, Dordrecht, pp 977–980

    Google Scholar 

  • Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61:33–42

    Google Scholar 

  • Strasser RJ, Tsimili-Michael M, Srivastava A (2004) Analysis of the Chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 321–362

    Chapter  Google Scholar 

  • Sukenik A, Bennet J, Falkowski PG (1987) Light-saturated photosynthesis – limitation by electron transport or carbon fixation? Biochim Biophys Acta 891:205–215

    Article  CAS  Google Scholar 

  • Sukenik A, Beardall J, Kromkamp JC, Kopecký J, Masojídek J, van Bergeijk S, Gabai S, Shaham E, Yamshon A (2009) Photosynthetic performance of outdoor Nannochloropsis mass cultures to extreme environmental conditions – assessment by chlorophyll fluorescence techniques. Aquat Microb Ecol 56: 297–308

    Article  Google Scholar 

  • Ting CS, Owens TG (1992) Limitation of the pulse-modulated technique for measuring the fluorescence characteristics of algae. Plant Physiol 100:367–373

    Article  CAS  Google Scholar 

  • Torzillo G, Pushparaj B, Masojidek J, Vonshak A (2003). Biological constraints in algal biotechnology. Biotechnol Bioprocess Engineering, 8:338–348

    Google Scholar 

  • Torzillo G, Accolla P, Pinzani E, Masojídek J (1996) In situ monitoring of chlorophyll fluorescence to assess the synergistic effect of low temperature and high irradiance stresses in Spirulina cultures grown outdoors in photobioreactors. J Appl Phycol 8:283–291

    Article  CAS  Google Scholar 

  • Torzillo G, Bernardini P, Masojídek J (1998) On-line monitoring of chlorophyll fluorescence to assess the extent of photoinhibition of photosynthesis induced by high oxygen concentration and low temperature and its effect on the productivity of outdoor cultures of Spirulina platensis (Cyanobacteria). J Phycol 34:504–510

    Article  CAS  Google Scholar 

  • Torzillo G, Goksan T, Faraloni C, Kopecky J, Masojídek J (2003) Interplay between photochemical activities and pigment composition in an outdoor culture of Haematococcus pluvialis during the shift from the green to red stage. J Appl Phycol 15:127–136

    Article  CAS  Google Scholar 

  • Tredici M (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal mass cultures. Blackwell Science, Oxford, pp 178–214

    Google Scholar 

  • Van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–145

    Article  Google Scholar 

  • Vonshak A, Torzillo G (2004) Environmental stress physiology. In: Richmond A (ed) Handbook of microalgal mass cultures. Blackwell Science, Oxford, pp 57–82

    Google Scholar 

  • Vonshak A, Torzillo G, Tomaselli L (1994) Use of chlorophyll fluorescence to estimate the effect of photoinhibition in outdoor cultures of Spirulina platensis. J Appl Phycol 6:31–34

    Article  Google Scholar 

  • Vonshak A, Torzillo G, Accolla P, Tomaselli L (1996) Light and oxygen stress in Spirulina platensis (cyanobacteria) grown outdoors in tubular reactors. Physiol Plant 97:175–179

    Article  CAS  Google Scholar 

  • Vonshak A, Torzillo G, Masojídek J, Boussiba S (2001) Sub-optimal morning temperature induces photoinhibition in dense outdoor cultures of the alga Monodus subterraneus (Eustigmatophyta). Plant Cell Environ 24:1113–1118

    Article  Google Scholar 

  • Walker DA (2009) Biofuels, facts, fantasy, and feasibility. J Appl Phycol 21:509–517

    Article  Google Scholar 

  • Wollman F-A (2001) State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. The EMBO Journal 20:3623–3630

    Article  CAS  Google Scholar 

  • Zhu X, Long SP, Ort DR (2008) Converting solar energy into crop production. Curr Opin Biotechnol 19:153–159

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Mr. Pavel Souček for preparation of diagrams and Mr. Steve Ridgill for language corrections.

The Ministry of Education, Youth and Sports and the Czech Academy of Sciences supported this work through the project MSM6007665808 and AVOZ 50200510. Partial funding was also provided by project 522/06/1090 and 521/09/0656 of the Czech Science Foundation, and by project IAA608170601 of the Grant Agency of the Czech Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Masojídek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Masojídek, J., Vonshak, A., Torzillo, G. (2010). Chlorophyll Fluorescence Applications in Microalgal Mass Cultures. In: Suggett, D., Prášil, O., Borowitzka, M. (eds) Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. Developments in Applied Phycology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9268-7_13

Download citation

Publish with us

Policies and ethics