Structure–Property Relationships in Novel High Pressure Superhard Materials

Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


Research on novel high-pressure superhard materials (those approaching diamond and cubic boron nitride in hardness) is driven by both scientific and practical objectives: the desire to understand their structure and bonding, which determine the unique properties of these materials, on one hand, and the demand of modern technologies for robust materials with superior properties, on the other. Structure–property relationships in newly synthesised superhard materials, as well as some methodological aspects of their characterisation are in focus of the present paper.


Superhard materials diamond boron nitride HP boron nanocrystalline materials 


  1. Albert B., Hillebrecht H., Angew. Chem. Int. Ed. 48, 2–31 (2009).Google Scholar
  2. Ashcroft N.W., Mermin N.D., Solid State Physics. Harcourt College Publishers, New York (1976).Google Scholar
  3. Berman R. (ed.), Physical Properties of Diamonds, Clarendon Press, Oxford, 1965.Google Scholar
  4. Blase X., Bustarret E., Chapelier C., Klein T., Marcenat C., Nat. Mater. 8, 375–382 (2009).ADSGoogle Scholar
  5. Brazhkin V., Dubrovinskaia N., Nicol M., Novikov N., Riedel R., Solozhenko V., Zhao Y.Nat. Mater. 3, 576–577 (2004).ADSGoogle Scholar
  6. Brazhkin V.V., Taniguichi T., Akaishi M., Popova S.V., J. Mater. Res. 19, 1643 (2004).ADSGoogle Scholar
  7. Buschveck K.C., Boron Compounds, Elemental Boron and Boron Carbides 13, Gmelin Handbook of Inorganic Chemistry, Springer Verlag, Berlin (1981).Google Scholar
  8. Bustarret E. et al., Phys. Rev. Lett. 93, 237005 (2004).ADSGoogle Scholar
  9. Chen Z.Y., Xiang H.J., Yang J., Hou J.G., Zhu Q., Phys. Rev. B 74, 012102 (2006).ADSGoogle Scholar
  10. Chiang Y., Birnie D.P., Kingery W.D., Physical Ceramics, Wiley, New York/London (1997).Google Scholar
  11. Chung H.Y., Weinberger M.B., Levine J.B., Kavner A., Yang J.M., Tolbert S.H., Kaner R.B., Science, 316, 436 (2007a).ADSGoogle Scholar
  12. Chung H.Y., Weinberger M.B., Levine J.B., Cumberland R.W., Kavner A., Yang J.M., Tolbert S.H., Kaner R.B., Science 318, 1550d (2007b).ADSGoogle Scholar
  13. Cohen M.L., J. Hard Mater. 2, 13–27 (1991).ADSGoogle Scholar
  14. Cumberland R.W., Weinberger M.B., Gilman J.J., Clark S.M., Tolbert S.H., Kaner R.B., J., Am. Chem. Soc. 127, 7264 (2005).Google Scholar
  15. Dub S.N., Petrusha I.A., High Press. Res. 26, 71 (2006).Google Scholar
  16. Dubrovinskaia N., Dubrovinsky L., Langenhorst F., Jacobsen S., Liebske C., Diam. Relat. Mater. 14, 16–22 (2004).ADSGoogle Scholar
  17. Dubrovinskaia N., Dubrovinsky L., Crichton W., Langenhorst F., Richter A., Appl. Phys. Lett. 87, 083106 (2005).ADSGoogle Scholar
  18. Dubrovinskaia N., Dub S., Dubrovinsky L., Nano Lett. 6, 824–826 (2006a).ADSGoogle Scholar
  19. Dubrovinskaia N., Eska G., Sheshin G. A., Braun H., J. Appl Phys., 033903-1-7 (2006b).Google Scholar
  20. Dubrovinskaia N., Dubrovinsky L., Solozhenko V.L., Science 318, 1550c (2007a).ADSGoogle Scholar
  21. Dubrovinskaia N., Solozhenko V. L., Miyajima N., Dmitriev V., Kurakevych O. O., Dubrovinsky L., Appl. Phys. Lett. 90, 101912 (2007b).ADSGoogle Scholar
  22. Dubrovinskaia N., Wirth R., Wosnitza J., Papageorgiou T., Braun H.F., Miyajima N., Dubrovinsky L., Proc. Natl. Acad. Sci. USA 105, 33, 11619–11622 (2008).Google Scholar
  23. Ekimov E.A., Sidorov V.A., Bauer E.D., Mel’nik N.N., Curro N.J., Thompson J.D., Stishov S.M. Nature 428, 542 (2004).ADSGoogle Scholar
  24. Eremets M.I., Struzhkin V.V., Ho-kwang Mao, Hemley R.J., Science 293, 272 (2001).ADSGoogle Scholar
  25. Fischer-Cripps A.C., Nanoindentation, Springer-Verlag, New York (2002).Google Scholar
  26. Gillespie J.S., J. Am. Chem. Soc. 88, 2423 (1966).Google Scholar
  27. Gou H., Hou L., Zhang J., Li H., Sun G., Gao F., Appl. Phys. Lett. 88(22), 1904 (2006).Google Scholar
  28. Häussermann U., Simak S.I., Ahuja R., Johansson B., Phys. Rev. Lett. 90, 65701 (2003).Google Scholar
  29. He D., Zhao Y., Daemen L., Qian J., Shen T.D., Zerda T.W., Appl. Phys. Lett. 81, 643 (2002).ADSGoogle Scholar
  30. Hoard J.L., Sullenger D.B., Kennard C.H.L., Highes R.E., J. Solid State Chem. 1, 268, (1970).ADSGoogle Scholar
  31. Irifune T., Kurio A., Sakamoto S., Inoue T., Sumiya H., Nature (London) 421, 599 (2003).ADSGoogle Scholar
  32. Jiang C., Lin Z., Zhang J., Zhao Y., Appl. Phys. Lett. 94, 191906 (2009).ADSGoogle Scholar
  33. Katada K., Jpn. J. Appl. Phys. 5, 582 (1966).ADSGoogle Scholar
  34. Ma Y., Prewitt Ch.T., Zou G., Ho-kwang Mao, Hemley R.J., Phys. Rev. B 67, 174116 (2003).ADSGoogle Scholar
  35. Mao W.L., Mao H.-K., Eng P. J., Trainor T.P., Newville M., Kao C.-C., Heinz D.L., J. Shu, Y. Meng, Hemley R. J., Science 302, 425–427 (2003).ADSGoogle Scholar
  36. McMillan P.F., Nat. Mater. 1, 19 (2002).ADSGoogle Scholar
  37. Morell R., Handbook of Properties of Technical and Engineering Ceramics. HMSO books, London (1987).Google Scholar
  38. Nakamoto Y., Sumiya H., Matsuoka T., Shimizu K., Irifune T., Ohishi Y., Jpn. J. Appl. Phys., 46, 25, L640–L641 (2007).Google Scholar
  39. Naslain R., Boron and Refractory Borides (Ed.: V. I. Matkovich), Springer Verlag, Berlin (1977).Google Scholar
  40. Oganov A.R., Chen J., Gatti C., Ma Y., Ma Y, Glass C.W., Liu Z., Yu T., Kurakevych O.O., Solozhenko V.L., Nature 457, 863 (2009).ADSGoogle Scholar
  41. Oliver W.C., Pharr G., J. Mater. Res. 7, 1562 (1992).ADSGoogle Scholar
  42. Qin J., He D., Wang J., Fang L., Lei L., Li Y., Hu J., Kou Z., Bi Y., Adv. Mater. 20, 4780–4783 (2008).Google Scholar
  43. Richter A., Smith R., Dubrovinskaia N., McGee E., High Press. Res. 26, 2, 99–109 (2006).Google Scholar
  44. Sanz D.N., Loubeyre P., Mezouar M., Phys. Rev. Lett. 89, 245501 (2002).ADSGoogle Scholar
  45. Sidorov V.A., Ekimov E.A., Stishov S.M., Bauer E.D., Thompson J.D., Phys Rev B. 71, 060502 (2005).ADSGoogle Scholar
  46. Solozhenko V.L., Turkevich V.Z., J. Therm. Anal. 38, 1181 (1992).Google Scholar
  47. Solozhenko V.L., Andrault D., Fiquet G., Mezouar M., Rubie D.C., Appl. Phys. Lett. 78, 1385 (2001).ADSGoogle Scholar
  48. Sumiya H., Irifune T., J. Mater. Res., 22, 8 (2007).Google Scholar
  49. Sumiya H., Irifune T., Kurio A., Sakamoto S., Inoue T., J. Mat. Sci., 39, 445–450 (2004).ADSGoogle Scholar
  50. Takano Y. et al., Appl. Phys. Lett. 85, 14, 2851 (2004).ADSGoogle Scholar
  51. Taniguchi T., Akaishi.M, Yamaoka S., J. Am. Ceram. Soc. 79, 547 (1996).Google Scholar
  52. Tronke K., Semicond. Sci. Technol. 18, S20 (2003).ADSGoogle Scholar
  53. Umezawa H. et al., Z. Anorg. Allg. Chem. 627, 2100–2104 (2001).Google Scholar
  54. Veprˇek S., Zeer A., Riedel R., Handbook of Ceramic Hard Materials (Ed.: R. Riedel), Wiley, Weinheim (2000).Google Scholar
  55. Will G., Ploog K., Nature 251, 406 (1974).ADSGoogle Scholar
  56. Wentorf R.H., Chem Phys. 26, 956 (1957).ADSGoogle Scholar
  57. Wentorf R.H., Science 147, 49–50 (1965).ADSGoogle Scholar
  58. Zarechnaya E.Yu., Dubrovinsky L., Dubrovinskaia N., Miyajima N., Filinchuk Y., Chernyshov D., Dmitriev V., Sci. Technol. Adv. Mater. 9, 044209 (2008).Google Scholar
  59. Zarechnaya E.Yu., Dubrovinsky L., Dubrovinskaia N., Filinchuk Y., Chernyshov D., Dmitriev V., Miyajima N., El Goresy A., Braun H.F., Van Smaalen S., Kantor I., Kantor A., Prakapenka V., Hanfland M., Mikhaylushkin A.S., Abrikosov I.A., Simak S.I., Phys. Rev. Lett. 102, 185501 (2009).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Mineralphysik, Institut für GeowissenschaftentUniversität HeidelbergHeidelbergGermany
  2. 2.Lehrstuhl für Kristallographie, Physikalisches InstitutUniversität BayreuthBayreuthGermany
  3. 3.Bayerisches GeoinstitutUniversität BayreuthBayreuthGermany

Personalised recommendations