Skip to main content

Evolutionary Crystal Structure Prediction and Novel High-Pressure Phases

  • Conference paper
  • First Online:
  • 2430 Accesses

Abstract

Prediction of stable crystal structures at given pressure-temperature conditions, based only on the knowledge of the chemical composition, is a central problem of condensed matter physics. This extremely challenging problem is often termed “crystal structure prediction problem”, and recently developed evolutionary algorithm USPEX (Universal Structure Predictor: Evolutionary Xtallography) made an important progress in solving it, enabling efficient and reliable prediction of structures with up to ~40 atoms in the unit cell using ab initio methods. Here we review this methodology, as well as recent progress in analyzing energy landscape of solids (which also helps to analyze results of USPEX runs). We show several recent applications – (1) prediction of new high-pressure phases of CaCO3, (2) search for the structure of the polymeric phase of CO2 (“phase V”), (3) high-pressure phases of oxygen, (4) exploration of possible stable compounds in the Xe–C system at high pressures, (5) exotic high-pressure phases of elements boron and sodium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraham N.L., Probert M.I.J. (2006). A periodic genetic algorithm with real-space representation for crystal structures and polymorph prediction. Phys. Rev. B73, art. 224104.

    ADS  Google Scholar 

  • Akahama Y., Kawamura H., Hausermann D., Hanfland M., Shimomura O. (1995). New high-pressure structural transition of oxygen at 96 GPa associated with metallization in a molecular solid. Phys. Rev. Lett. 74, 4690–4693.

    ADS  Google Scholar 

  • Amberger E., Rauh P.A. (1974). Structur des borreichen Borphosphids. Acta Cryst. B30, 2549–2553.

    Google Scholar 

  • Bader (1990). Atoms in Molecules. A Quantum Theory. Oxford University Press: Oxford, 438 pp.

    Google Scholar 

  • Barabash S.V., Blum V., Muller S., Zunger A. (2006). Prediction of unusual stable ordered structures of Au-Pd alloys via a first-principles cluster expansion. Phys. Rev. B74, art. 035108.

    ADS  Google Scholar 

  • Bazterra V.E., Ferraro M.B., Facelli J.C. (2002). Modified genetic algorithm to model crystal structures. I. Benzene, naphthalene and anthracene. J. Chem. Phys. 116, 5984–5991.

    ADS  Google Scholar 

  • Blöchl P.E. (1994). Projector augmented-wave method. Phys. Rev. B50, 17953–17979.

    ADS  Google Scholar 

  • Boisen M.B., Gibbs G.V., Bukowinski M.S.T. (1994). Framework silica structures generated using simulated annealing with a potential energy function based on an H6Si2O7 molecule. Phys. Chem. Miner. 21, 269–284.

    ADS  Google Scholar 

  • Bonev S.A., Gygi F., Ogitsu T., Galli G. (2003). High-pressure molecular phases of solid carbon dioxide. Phys. Rev. Lett. 91, 065501.

    ADS  Google Scholar 

  • Bush T.S., Catlow C.R.A., Battle P.D. (1995). Evolutionary programming techniques for predicting inorganic crystal structures. J. Mater. Chem. 5, 1269–1272.

    Google Scholar 

  • Christy A.G. (1995). Isosymmetric structural phase transitions: phenomenology and examples. Acta Cryst. B51, 753–757.

    Google Scholar 

  • Curtarolo S., Morgan D., Ceder G. (2005). Accuracy of ab initio methods in predicting the crystal structures of metals: a review of 80 binary alloys. CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 29, 163–211.

    Google Scholar 

  • Curtarolo S., Morgan D., Persson K., Rodgers J., Ceder G. (2003). Predicting crystal structures with data mining of quantum calculations. Phys. Rev. Lett. 91, art. 135503.

    ADS  Google Scholar 

  • Deaven D.M., Ho K.M. (1995). Molecular geometry optimization with a genetic algorithm. Phys. Rev. Lett. 75, 288–291.

    ADS  Google Scholar 

  • Deem M.W., Newsam, J.M. (1989). Determination of 4-connected framework crystal structures by simulated annealing. Nature 342, 260–262.

    ADS  Google Scholar 

  • Dong J.J., Tomfohr J.K., Sankey O.F., Leinenweber K., Somayazulu M., McMillan P.F. (2000). Investigation of hardness in tetrahedrally bonded nonmolecular CO2 solids by density-functional theory. Phys. Rev. B62, 14685–14689.

    ADS  Google Scholar 

  • Dubrovinsky L., Dubrovinskaia N., Crichton W.A., Mikhailushkin A.S., Simak S.I., Abrikosov I.A., de Almeida J.S., Ahuja R., Luo W., Johansson B. (2007). Noblest of all metals is structurally unstable at high pressure. Phys. Rev. Lett. 98, 045503.

    ADS  Google Scholar 

  • Fujihisa H. Akahama Y., Kawamura H., Ohishi Y., Shimomura O., Yamawaki H., Sakashita M., Gotoh Y., Takeya S., Honda K. (2006). O8 cluster structure of the epsilon phase of solid oxygen. Phys. Rev. Lett. 97, art. 085503.

    ADS  Google Scholar 

  • Gale J.D. (2005). GULP: Capabilities and prospects. Z. Krist. 220, 552–554.

    Google Scholar 

  • Gao G., Oganov A.R., Bergara A., Martinez-Canalez M., Cui T., Iitaka T., Ma Y., Zou G. (2008). Superconducting high pressure phase of germane. Phys. Rev. Lett. 101, 107002.

    ADS  Google Scholar 

  • Glass C.W., Oganov A.R., Hansen N. (2006). USPEX – evolutionary crystal structure prediction. Comp. Phys. Comm. 175, 713–720.

    ADS  MATH  Google Scholar 

  • Goettel K.A., Eggert J.H., Silvera I.F., Moss W.C. (1989). Optical evidence for the metallization of xenon at 132(5) GPa. Phys. Rev. Lett. 62, 665–668.

    ADS  Google Scholar 

  • Goncharenko I.N. (2005). Evidence for a magnetic collapse in the epsilon phase of solid oxygen. Phys. Rev. Lett. 94, art. 205701.

    ADS  Google Scholar 

  • Gottwald D., Kahl G., Likos C.N. (2005). Predicting equilibrium structures in freezing processes. J. Chem. Phys. 122, art. 204503.

    ADS  Google Scholar 

  • Gödecker S. (2004) Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys. 120, 9911–9917.

    ADS  Google Scholar 

  • Gregoryanz, E., Degtyareva, O., Somayazulu, M., Hemley, R.J., Mao, H.K. (2005). Melting of dense sodium. Phys. Rev. Lett. 94, 185502.

    ADS  Google Scholar 

  • Gregoryanz E., Lundegaard L.F., McMahon M.I., Guillaume C., Nelmes R.J., Mezouar M. (2008). Structural diversity of sodium. Science 320, 1054–1057.

    ADS  Google Scholar 

  • Gregoryanz E., Sanloup C., Somayazulu M., Badro J., Fiquet G., Mao H.K., Hemley R.J. (2004). Synthesis and characterization of a binary noble metal nitride. Nat. Mater. 3, 294–297.

    ADS  Google Scholar 

  • Grochala W. (2007). Atypical compounds of gases, which have been called ‘noble’. Chem. Soc. Rev. 36, 1632–1655.

    Google Scholar 

  • Hanfland M., Syassen K., Loa I., Christensen N.E., Novikov D.L. (2002). Na at megabar pressures. Poster at 2002 High Pressure Gordon Conference.

    Google Scholar 

  • Holm B., Ahuja R., Belonoshko A., Johansson B. (2000). Theoretical investigation of high pressure phases of carbon dioxide. Phys. Rev. Lett. 85, 1258–1261.

    ADS  Google Scholar 

  • Jóhannesson G.H., Bligaard T., Ruban A.V., Skriver H.L., Jacobsen K.W., Nørskov J.K. (2002). Combined electronic structure and evolutionary search approach to materials design. Phys. Rev. Lett. 88, art. 255506.

    ADS  Google Scholar 

  • Kresse G., Furthmüller J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane wave basis set. Phys. Rev. B54, 11169–11186.

    ADS  Google Scholar 

  • Kresse G., Joubert D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B59, 1758–1775.

    ADS  Google Scholar 

  • Kwei G.H., Morosin B. (1996). Structures of the boron-rich boron carbides from neutron powder diffraction: implications for the nature of the inter-icosahedral chains. J. Phys. Chem. 100, 8031–8039.

    Google Scholar 

  • Lasaga A.C., Gibbs G.V. (1987). Applications of quantum-mechanical potential surfaces to mineral physics calculations. Phys. Chem. Minerals 14, 107–117.

    ADS  Google Scholar 

  • Lazicki A., Goncharov A.F., Struzhkin V.V., Cohen R.E., Liu Z., Gregoryanz E., Guillaume C., Mao H.K., Hemley R.J. (2009). Anomalous optical and electronic properties of dense sodium. Proc. Natl. Acad. Sci. 106, 6525–6528.

    ADS  Google Scholar 

  • Li Q., Oganov A.R., Wang H., Wang H., Xu Y., Cui T., Ma Y., Mao H.-K., Zou G. (2009). Superhard monoclinic polymorph of carbon. Phys. Rev. Lett. 102, 175506.

    ADS  Google Scholar 

  • Lundegaard L.F., Weck G., McMahon M.I., Desgreniers S., Loubeyre P. (2006). Observation of an O8 molecular lattice in the epsilon phase of solid oxygen. Nature 443, 201–204.

    ADS  Google Scholar 

  • Ma Y., Eremets M.I., Oganov A.R., Xie Y., Trojan I., Medvedev S., Lyakhov A.O., Valle M., Prakapenka V. (2009). Transparent dense sodium. Nature 458, 182–185.

    ADS  Google Scholar 

  • Ma Y.-M., Oganov A.R., Glass C.W. (2007). Structure of the metallic ζ-phase of oxygen and isosymmetric nature of the ε-ζ phase transition: ab initio simulations. Phys. Rev. B76, art. 064101.

    ADS  Google Scholar 

  • Ma Y., Oganov A.R., Xie Y., Li Z., Kotakoski J. (2009a). Novel high pressure structures of polymeric nitrogen. Phys. Rev. Lett. 102, 065501.

    ADS  Google Scholar 

  • Ma Y., Wang Y., Oganov A.R. (2009). Absence of superconductivity in the novel high-pressure polymorph of MgB2. Phys. Rev. B79, 054101.

    ADS  Google Scholar 

  • Mao W.L., Mao H.K., Eng P.J., Trainor T.P., Newville M., Kao C.C., Heinz D.L., Shu J., Meng Y., Hemley R.J. (2003). Bonding changes in compressed superhard graphite. Science 302, 425–427.

    ADS  Google Scholar 

  • Martinez-Canales M., Oganov A.R., Lyakhov A., Ma Y., Bergara A. (2009). Novel structures of silane under pressure. Phys. Rev. Lett. 102, 087005.

    ADS  Google Scholar 

  • Martoňák R., Donadio D., Oganov A.R., Parrinello M. (2006). Crystal structure transformations in SiO2 from classical and ab initio metadynamics. Nature Materials 5, 623–626.

    ADS  Google Scholar 

  • Martoňák R., Donadio D., Oganov A.R., Parrinello M. (2007). 4- to 6- coordinated silica: transformation pathways from metadynamics. Phys. Rev. B76, 014120.

    ADS  Google Scholar 

  • Martonak R., Laio A., Bernasconi M., Ceriani C., Raiteri P., Zipoli F., and Parrinello M. (2005). Simulation of structural phase transitions by metadynamics. Z. Krist. 220, 489–498.

    Google Scholar 

  • Martonak R., Laio A., Parrinello M. (2003). Predicting crystal structures: the Parrinello-Rahman method revisited. Phys. Rev. Lett, 90, 075503.

    ADS  Google Scholar 

  • Martonak R., Oganov A.R., Glass C.W. (2007). Crystal structure prediction and simulations of structural transformations: metadynamics and evolutionary algorithms. Phase Transitions 80, 277–298.

    Google Scholar 

  • Murakami, M., Hirose, K., Kawamura, K., Sata, N., Ohishi, Y. (2004). Post-perovskite phase transition in MgSiO3. Science 307, 855–858.

    ADS  Google Scholar 

  • Neaton J.B., Ashcroft N.W. (1999). Pairing in dense lithium. Nature 400, 141–144.

    ADS  Google Scholar 

  • Neaton J.B., Ashcroft N.W. (2002). Low-energy linear structures in dense oxygen: implications for the epsilon phase. Phys. Rev. Lett. 88, 205503.

    ADS  Google Scholar 

  • Nicol M., Hirsch K.R., Holzapfel W.B. (1979). Oxygen phase equilibria near 298 K. Chem. Phys. Lett. 68, 49–52.

    ADS  Google Scholar 

  • Oganov A.R., Chen J., Gatti C., Ma Y.-Z., Ma Y.-M., Glass C.W., Liu Z., Yu T., Kurakevych O.O., Solozhenko V.L. (2009). Ionic high-pressure form of elemental boron. Nature 457, 863–867.

    ADS  Google Scholar 

  • Oganov A.R., Glass C.W. (2006). Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 124, art. 244704.

    ADS  Google Scholar 

  • Oganov A.R., Glass C.W. (2008). Evolutionary crystal structure prediction as a tool in materials design. J. Phys.: Cond. Mattter 20, art. 064210.

    ADS  Google Scholar 

  • Oganov A.R., Glass C.W., Ono S. (2006). High-pressure phases of CaCO3: crystal structure prediction and experiment. Earth Planet. Sci. Lett. 241, 95–103.

    ADS  Google Scholar 

  • Oganov A.R., Ma Y., Glass C.W., Valle M. (2007). Evolutionary crystal structure prediction: overview of the USPEX method and some of its applications. Psi-k Newsletter, issue 84, Highlight of the Month, 142–171.

    Google Scholar 

  • Oganov A.R., Martoňák R., Laio A., Raiteri P., Parrinello M. (2005). Anisotropy of Earth’s D” layer and stacking faults in the MgSiO3 post-perovskite phase. Nature 438, 1142–1144.

    ADS  Google Scholar 

  • Oganov, A.R., Ono, S. (2004). Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s Dlayer. Nature 430, 445–448.

    ADS  Google Scholar 

  • Oganov A.R., Ono S., Ma Y., Glass C.W., Garcia A. (2008). Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in the Earth’s lower mantle. Earth Planet. Sci. Lett. 273, 38–47.

    ADS  Google Scholar 

  • Oganov A.R., Valle M. (2009). How to quantify energy landscapes of solids. J. Chem. Phys. 130, 104504.

    ADS  Google Scholar 

  • Oganov A.R., Valle M. (2009). How to quantify energy landscapes of solids. J. Chem. Phys. 130, 104504.

    ADS  Google Scholar 

  • Ogitsu T., Gygi F., Reed J., Motome Y., Schwegler E., Galli G. (2009). Imperfect Crystal and Unusual Semiconductor: boron, a Frustrated Element. J. Am. Chem. Soc. 131, 1903–1909.

    Google Scholar 

  • Ono S., Kikegawa T., Ohishi Y. (2005). A high-pressure and high-temperature synthesis of platinum carbide. Sol. St. Comm. 133, 55–59.

    ADS  Google Scholar 

  • Ono S., Kikegawa T., Ohishi Y. (2007). High-pressure phase transition of CaCO3. Am. Mineral. 92, 1246–1249.

    Google Scholar 

  • Ono S., Kikegawa T., Ohishi Y., Tsuchiya J. (2005). Post-aragonite phase transformation in CaCO3 at 40 GPa, Am. Mineral. 90, 667–671.

    Google Scholar 

  • Ono S., Oganov A.R., Brodholt J.P., Vocadlo L., Wood I.G., Glass C.W., Côté A.S., Price G.D. (2007). High-pressure phase transformations of FeS: novel phases at conditions of planetary cores. Earth Planet. Sci. Lett. 272, 481–487.

    ADS  Google Scholar 

  • Pannetier J., Bassasalsina J., Rodriguez-Carva jal J., Caignaert V. (1990) Prediction of crystal structures from crystal chemistry rules by simulated annealing. Nature, 346, 343–345.

    ADS  Google Scholar 

  • Perdew J.P., Burke K., Ernzerhof M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868.

    ADS  Google Scholar 

  • Pickard C.J., Needs R.J. (2006). High-pressure phases of silane. Phys. Rev. Lett. 97, art. 045504.

    ADS  Google Scholar 

  • Sanloup C., Schmidt B.C., Perez E.M.C., Jambon A., Gregoryanz E., Mezouar M. (2005). Retention of xenon in quartz and Earth's missing xenon. Science 310, 1174–1177.

    ADS  Google Scholar 

  • Schönborn S., Goedecker S., Roy S., Oganov A.R. (2009). The performance of minima hopping and evolutionary algorithms for cluster structure prediction. J. Chem. Phys. 130, 144108.

    ADS  Google Scholar 

  • Schön J.C., Jansen M. (1996) First step towards planning of syntheses in solid-state chemistry: determination of promising structure candidates by global optimization. Angew. Chem. – Int. Ed. 35, 1287–1304.

    Google Scholar 

  • Serra S., Chiarotti G., Scandolo S., Tosatti E. (1998). Pressure-induced magnetic collapse and metallization of molecular oxygen: the ζ-O2 phase. Phys. Rev. Lett. 80, 5160–5163.

    ADS  Google Scholar 

  • Shimizu K., Suhara K., Ikumo M., Eremets M.I., Amaya K. (1998). Superconductivity in oxygen. Nature 393, 767–769.

    ADS  Google Scholar 

  • Sluiter M.H.F., Colinet C., Pasturel A. (2006). Ab initio calculation of phase stability in Au-Pd and Ag-Pt alloys. Phys. Rev. B73, 174204.

    ADS  Google Scholar 

  • Soler J.M., Artacho E., Gale J.D., Garcia A., Junquera J., Ordejon P., Sanchez-Portal D. (2002). The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14, 2745–2779.

    ADS  Google Scholar 

  • Solozhenko V.L., Kurakevych O.O., Oganov A.R. (2008). On the hardness of a new boron phase, orthorhombic γ-B28. J. Superhard Mater. 30, 428–429.

    Google Scholar 

  • Steudel R., Wong M.W. (2007). Dark-red O8 molecules in solid oxygen: rhomboid clusters, not S8-like rings. Angew. Chem. Int. Ed. 46, 1768–1771.

    Google Scholar 

  • Tsagareishvili O.A., Chkhartishvili L.S., Gabunia D.L. (2009). Apparent low-frequency charge capacitance of semiconducting boron. Semiconductors 43, 14–20.

    ADS  Google Scholar 

  • Urusov V.S., Dubrovinskaya N.A., Dubrovinsky L.S. (1990). Generation of likely crystal structures of minerals. Moscow State University Press, Moscow.

    Google Scholar 

  • Valle M. (2005). STM3: a chemistry visualization platform. Z. Krist. 220, 585–588.

    Google Scholar 

  • Valle M., Oganov A.R. (2008). Crystal structure classifier for an evolutionary algorithm structure predictor. IEEE Symposium on Visual Analytics Science and Technology (October 21–23, Columbus, OH), pp. 11–18.

    Google Scholar 

  • van Setten M.J., Uijttewaal M.A., de Wijs G.A., de Groot R.A. (2007) Thermodynamic stability of boron: The role of defects and zero point motion. J. Am. Chem. Soc. 129, 2458–2465.

    Google Scholar 

  • Wang Y, Oganov AR (2008) Research on the evolutionary prediction of very complex crystal structures. IEEE Computational Intelligence Society Walter Karplus. Summer Research Grant 2008 Final Report. http://www.ieee-cis.org/_files/EAC_Research_2008_Report_WangYanchao.pdf

  • Weck G., Desgreniers S., Loubeyre P., Mezouar M. (2009). Single-crystal structural characterization of the metallic phase of oxygen. Phys. Rev. Lett. 102, 255503.

    ADS  Google Scholar 

  • Wentorf, R.H. (1965) Boron: another form. Science 147, 49–50.

    ADS  Google Scholar 

  • Woodley S.M. (2004). Prediction of crystal structures using evolutionary algorithms and related techniques. Struct. Bond. 110, 95–132.

    Google Scholar 

  • Woodley S.M., Battle P.D., Gale J.D., Catlow C.R.A. (1999). The prediction of inorganic crystal structures using a genetic algorithm and energy minimization. Phys. Chem. Chem. Phys. 1, 2535–2542.

    Google Scholar 

  • Yoo C.S., Cynn H., Gygi F., Galli G., Iota V., Nicol M., Carlson S., Hausermann D., Mailhiot C. (1999). Crystal structure of carbon dioxide at high pressure: “Superhard” polymeric carbon dioxide. Phys. Rev. Lett. 83, 5527–5530.

    ADS  Google Scholar 

Download references

Acknowledgments

ARO thanks R. Hoffmann, W. Grochala, R.J. Hemley and R.M. Hazen for exciting discussions. ARO also gratefully acknowledges financial support from the Research Foundation of Stony Brook University and from Intel Corporation. YM’s work is supported by the China 973 Program under Grant No. 2005CB724400, the National Natural Science Foundation of China under grant No. 10874054, the NSAF of China under Grant No. 10676011, and the 2007 Cheung Kong Scholars Programme of China. We acknowledge support from the National Science Foundation of China for the Research Fellowship for International Young Scientists (grant No. 10910263) and thank the Joint Supercomputer Center (Russian Academy of Sciences, Moscow) and CSCS (Manno) for providing supercomputer time. USPEX code is available on request from ARO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem R. Oganov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Oganov, A.R., Ma, Y., Lyakhov, A.O., Valle, M., Gatti, C. (2010). Evolutionary Crystal Structure Prediction and Novel High-Pressure Phases. In: Boldyreva, E., Dera, P. (eds) High-Pressure Crystallography. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9258-8_25

Download citation

Publish with us

Policies and ethics