Evolutionary Crystal Structure Prediction and Novel High-Pressure Phases

  • Artem R. Oganov
  • Yanming Ma
  • Andriy O. Lyakhov
  • Mario Valle
  • Carlo Gatti
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


Prediction of stable crystal structures at given pressure-temperature conditions, based only on the knowledge of the chemical composition, is a central problem of condensed matter physics. This extremely challenging problem is often termed “crystal structure prediction problem”, and recently developed evolutionary algorithm USPEX (Universal Structure Predictor: Evolutionary Xtallography) made an important progress in solving it, enabling efficient and reliable prediction of structures with up to ~40 atoms in the unit cell using ab initio methods. Here we review this methodology, as well as recent progress in analyzing energy landscape of solids (which also helps to analyze results of USPEX runs). We show several recent applications – (1) prediction of new high-pressure phases of CaCO3, (2) search for the structure of the polymeric phase of CO2 (“phase V”), (3) high-pressure phases of oxygen, (4) exploration of possible stable compounds in the Xe–C system at high pressures, (5) exotic high-pressure phases of elements boron and sodium.


Local Optimization Energy Landscape Electron Localization Function Candidate Structure Structure Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



ARO thanks R. Hoffmann, W. Grochala, R.J. Hemley and R.M. Hazen for exciting discussions. ARO also gratefully acknowledges financial support from the Research Foundation of Stony Brook University and from Intel Corporation. YM’s work is supported by the China 973 Program under Grant No. 2005CB724400, the National Natural Science Foundation of China under grant No. 10874054, the NSAF of China under Grant No. 10676011, and the 2007 Cheung Kong Scholars Programme of China. We acknowledge support from the National Science Foundation of China for the Research Fellowship for International Young Scientists (grant No. 10910263) and thank the Joint Supercomputer Center (Russian Academy of Sciences, Moscow) and CSCS (Manno) for providing supercomputer time. USPEX code is available on request from ARO.


  1. Abraham N.L., Probert M.I.J. (2006). A periodic genetic algorithm with real-space representation for crystal structures and polymorph prediction. Phys. Rev. B73, art. 224104.ADSGoogle Scholar
  2. Akahama Y., Kawamura H., Hausermann D., Hanfland M., Shimomura O. (1995). New high-pressure structural transition of oxygen at 96 GPa associated with metallization in a molecular solid. Phys. Rev. Lett. 74, 4690–4693.ADSGoogle Scholar
  3. Amberger E., Rauh P.A. (1974). Structur des borreichen Borphosphids. Acta Cryst. B30, 2549–2553.Google Scholar
  4. Bader (1990). Atoms in Molecules. A Quantum Theory. Oxford University Press: Oxford, 438 pp.Google Scholar
  5. Barabash S.V., Blum V., Muller S., Zunger A. (2006). Prediction of unusual stable ordered structures of Au-Pd alloys via a first-principles cluster expansion. Phys. Rev. B74, art. 035108.ADSGoogle Scholar
  6. Bazterra V.E., Ferraro M.B., Facelli J.C. (2002). Modified genetic algorithm to model crystal structures. I. Benzene, naphthalene and anthracene. J. Chem. Phys. 116, 5984–5991.ADSGoogle Scholar
  7. Blöchl P.E. (1994). Projector augmented-wave method. Phys. Rev. B50, 17953–17979.ADSGoogle Scholar
  8. Boisen M.B., Gibbs G.V., Bukowinski M.S.T. (1994). Framework silica structures generated using simulated annealing with a potential energy function based on an H6Si2O7 molecule. Phys. Chem. Miner. 21, 269–284.ADSGoogle Scholar
  9. Bonev S.A., Gygi F., Ogitsu T., Galli G. (2003). High-pressure molecular phases of solid carbon dioxide. Phys. Rev. Lett. 91, 065501.ADSGoogle Scholar
  10. Bush T.S., Catlow C.R.A., Battle P.D. (1995). Evolutionary programming techniques for predicting inorganic crystal structures. J. Mater. Chem. 5, 1269–1272.Google Scholar
  11. Christy A.G. (1995). Isosymmetric structural phase transitions: phenomenology and examples. Acta Cryst. B51, 753–757.Google Scholar
  12. Curtarolo S., Morgan D., Ceder G. (2005). Accuracy of ab initio methods in predicting the crystal structures of metals: a review of 80 binary alloys. CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 29, 163–211.Google Scholar
  13. Curtarolo S., Morgan D., Persson K., Rodgers J., Ceder G. (2003). Predicting crystal structures with data mining of quantum calculations. Phys. Rev. Lett. 91, art. 135503.ADSGoogle Scholar
  14. Deaven D.M., Ho K.M. (1995). Molecular geometry optimization with a genetic algorithm. Phys. Rev. Lett. 75, 288–291.ADSGoogle Scholar
  15. Deem M.W., Newsam, J.M. (1989). Determination of 4-connected framework crystal structures by simulated annealing. Nature 342, 260–262.ADSGoogle Scholar
  16. Dong J.J., Tomfohr J.K., Sankey O.F., Leinenweber K., Somayazulu M., McMillan P.F. (2000). Investigation of hardness in tetrahedrally bonded nonmolecular CO2 solids by density-functional theory. Phys. Rev. B62, 14685–14689.ADSGoogle Scholar
  17. Dubrovinsky L., Dubrovinskaia N., Crichton W.A., Mikhailushkin A.S., Simak S.I., Abrikosov I.A., de Almeida J.S., Ahuja R., Luo W., Johansson B. (2007). Noblest of all metals is structurally unstable at high pressure. Phys. Rev. Lett. 98, 045503.ADSGoogle Scholar
  18. Fujihisa H. Akahama Y., Kawamura H., Ohishi Y., Shimomura O., Yamawaki H., Sakashita M., Gotoh Y., Takeya S., Honda K. (2006). O8 cluster structure of the epsilon phase of solid oxygen. Phys. Rev. Lett. 97, art. 085503.ADSGoogle Scholar
  19. Gale J.D. (2005). GULP: Capabilities and prospects. Z. Krist. 220, 552–554.Google Scholar
  20. Gao G., Oganov A.R., Bergara A., Martinez-Canalez M., Cui T., Iitaka T., Ma Y., Zou G. (2008). Superconducting high pressure phase of germane. Phys. Rev. Lett. 101, 107002.ADSGoogle Scholar
  21. Glass C.W., Oganov A.R., Hansen N. (2006). USPEX – evolutionary crystal structure prediction. Comp. Phys. Comm. 175, 713–720.ADSzbMATHGoogle Scholar
  22. Goettel K.A., Eggert J.H., Silvera I.F., Moss W.C. (1989). Optical evidence for the metallization of xenon at 132(5) GPa. Phys. Rev. Lett. 62, 665–668.ADSGoogle Scholar
  23. Goncharenko I.N. (2005). Evidence for a magnetic collapse in the epsilon phase of solid oxygen. Phys. Rev. Lett. 94, art. 205701.ADSGoogle Scholar
  24. Gottwald D., Kahl G., Likos C.N. (2005). Predicting equilibrium structures in freezing processes. J. Chem. Phys. 122, art. 204503.ADSGoogle Scholar
  25. Gödecker S. (2004) Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys. 120, 9911–9917.ADSGoogle Scholar
  26. Gregoryanz, E., Degtyareva, O., Somayazulu, M., Hemley, R.J., Mao, H.K. (2005). Melting of dense sodium. Phys. Rev. Lett. 94, 185502.ADSGoogle Scholar
  27. Gregoryanz E., Lundegaard L.F., McMahon M.I., Guillaume C., Nelmes R.J., Mezouar M. (2008). Structural diversity of sodium. Science 320, 1054–1057.ADSGoogle Scholar
  28. Gregoryanz E., Sanloup C., Somayazulu M., Badro J., Fiquet G., Mao H.K., Hemley R.J. (2004). Synthesis and characterization of a binary noble metal nitride. Nat. Mater. 3, 294–297.ADSGoogle Scholar
  29. Grochala W. (2007). Atypical compounds of gases, which have been called ‘noble’. Chem. Soc. Rev. 36, 1632–1655.Google Scholar
  30. Hanfland M., Syassen K., Loa I., Christensen N.E., Novikov D.L. (2002). Na at megabar pressures. Poster at 2002 High Pressure Gordon Conference.Google Scholar
  31. Holm B., Ahuja R., Belonoshko A., Johansson B. (2000). Theoretical investigation of high pressure phases of carbon dioxide. Phys. Rev. Lett. 85, 1258–1261.ADSGoogle Scholar
  32. Jóhannesson G.H., Bligaard T., Ruban A.V., Skriver H.L., Jacobsen K.W., Nørskov J.K. (2002). Combined electronic structure and evolutionary search approach to materials design. Phys. Rev. Lett. 88, art. 255506.ADSGoogle Scholar
  33. Kresse G., Furthmüller J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane wave basis set. Phys. Rev. B54, 11169–11186.ADSGoogle Scholar
  34. Kresse G., Joubert D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B59, 1758–1775.ADSGoogle Scholar
  35. Kwei G.H., Morosin B. (1996). Structures of the boron-rich boron carbides from neutron powder diffraction: implications for the nature of the inter-icosahedral chains. J. Phys. Chem. 100, 8031–8039.Google Scholar
  36. Lasaga A.C., Gibbs G.V. (1987). Applications of quantum-mechanical potential surfaces to mineral physics calculations. Phys. Chem. Minerals 14, 107–117.ADSGoogle Scholar
  37. Lazicki A., Goncharov A.F., Struzhkin V.V., Cohen R.E., Liu Z., Gregoryanz E., Guillaume C., Mao H.K., Hemley R.J. (2009). Anomalous optical and electronic properties of dense sodium. Proc. Natl. Acad. Sci. 106, 6525–6528.ADSGoogle Scholar
  38. Li Q., Oganov A.R., Wang H., Wang H., Xu Y., Cui T., Ma Y., Mao H.-K., Zou G. (2009). Superhard monoclinic polymorph of carbon. Phys. Rev. Lett. 102, 175506.ADSGoogle Scholar
  39. Lundegaard L.F., Weck G., McMahon M.I., Desgreniers S., Loubeyre P. (2006). Observation of an O8 molecular lattice in the epsilon phase of solid oxygen. Nature 443, 201–204.ADSGoogle Scholar
  40. Ma Y., Eremets M.I., Oganov A.R., Xie Y., Trojan I., Medvedev S., Lyakhov A.O., Valle M., Prakapenka V. (2009). Transparent dense sodium. Nature 458, 182–185.ADSGoogle Scholar
  41. Ma Y.-M., Oganov A.R., Glass C.W. (2007). Structure of the metallic ζ-phase of oxygen and isosymmetric nature of the ε-ζ phase transition: ab initio simulations. Phys. Rev. B76, art. 064101.ADSGoogle Scholar
  42. Ma Y., Oganov A.R., Xie Y., Li Z., Kotakoski J. (2009a). Novel high pressure structures of polymeric nitrogen. Phys. Rev. Lett. 102, 065501.ADSGoogle Scholar
  43. Ma Y., Wang Y., Oganov A.R. (2009). Absence of superconductivity in the novel high-pressure polymorph of MgB2. Phys. Rev. B79, 054101.ADSGoogle Scholar
  44. Mao W.L., Mao H.K., Eng P.J., Trainor T.P., Newville M., Kao C.C., Heinz D.L., Shu J., Meng Y., Hemley R.J. (2003). Bonding changes in compressed superhard graphite. Science 302, 425–427.ADSGoogle Scholar
  45. Martinez-Canales M., Oganov A.R., Lyakhov A., Ma Y., Bergara A. (2009). Novel structures of silane under pressure. Phys. Rev. Lett. 102, 087005.ADSGoogle Scholar
  46. Martoňák R., Donadio D., Oganov A.R., Parrinello M. (2006). Crystal structure transformations in SiO2 from classical and ab initio metadynamics. Nature Materials 5, 623–626.ADSGoogle Scholar
  47. Martoňák R., Donadio D., Oganov A.R., Parrinello M. (2007). 4- to 6- coordinated silica: transformation pathways from metadynamics. Phys. Rev. B76, 014120.ADSGoogle Scholar
  48. Martonak R., Laio A., Bernasconi M., Ceriani C., Raiteri P., Zipoli F., and Parrinello M. (2005). Simulation of structural phase transitions by metadynamics. Z. Krist. 220, 489–498.Google Scholar
  49. Martonak R., Laio A., Parrinello M. (2003). Predicting crystal structures: the Parrinello-Rahman method revisited. Phys. Rev. Lett, 90, 075503.ADSGoogle Scholar
  50. Martonak R., Oganov A.R., Glass C.W. (2007). Crystal structure prediction and simulations of structural transformations: metadynamics and evolutionary algorithms. Phase Transitions 80, 277–298.Google Scholar
  51. Murakami, M., Hirose, K., Kawamura, K., Sata, N., Ohishi, Y. (2004). Post-perovskite phase transition in MgSiO3. Science 307, 855–858.ADSGoogle Scholar
  52. Neaton J.B., Ashcroft N.W. (1999). Pairing in dense lithium. Nature 400, 141–144.ADSGoogle Scholar
  53. Neaton J.B., Ashcroft N.W. (2002). Low-energy linear structures in dense oxygen: implications for the epsilon phase. Phys. Rev. Lett. 88, 205503.ADSGoogle Scholar
  54. Nicol M., Hirsch K.R., Holzapfel W.B. (1979). Oxygen phase equilibria near 298 K. Chem. Phys. Lett. 68, 49–52.ADSGoogle Scholar
  55. Oganov A.R., Chen J., Gatti C., Ma Y.-Z., Ma Y.-M., Glass C.W., Liu Z., Yu T., Kurakevych O.O., Solozhenko V.L. (2009). Ionic high-pressure form of elemental boron. Nature 457, 863–867.ADSGoogle Scholar
  56. Oganov A.R., Glass C.W. (2006). Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 124, art. 244704.ADSGoogle Scholar
  57. Oganov A.R., Glass C.W. (2008). Evolutionary crystal structure prediction as a tool in materials design. J. Phys.: Cond. Mattter 20, art. 064210.ADSGoogle Scholar
  58. Oganov A.R., Glass C.W., Ono S. (2006). High-pressure phases of CaCO3: crystal structure prediction and experiment. Earth Planet. Sci. Lett. 241, 95–103.ADSGoogle Scholar
  59. Oganov A.R., Ma Y., Glass C.W., Valle M. (2007). Evolutionary crystal structure prediction: overview of the USPEX method and some of its applications. Psi-k Newsletter, issue 84, Highlight of the Month, 142–171.Google Scholar
  60. Oganov A.R., Martoňák R., Laio A., Raiteri P., Parrinello M. (2005). Anisotropy of Earth’s D” layer and stacking faults in the MgSiO3 post-perovskite phase. Nature 438, 1142–1144.ADSGoogle Scholar
  61. Oganov, A.R., Ono, S. (2004). Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s Dlayer. Nature 430, 445–448.ADSGoogle Scholar
  62. Oganov A.R., Ono S., Ma Y., Glass C.W., Garcia A. (2008). Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in the Earth’s lower mantle. Earth Planet. Sci. Lett. 273, 38–47.ADSGoogle Scholar
  63. Oganov A.R., Valle M. (2009). How to quantify energy landscapes of solids. J. Chem. Phys. 130, 104504.ADSGoogle Scholar
  64. Oganov A.R., Valle M. (2009). How to quantify energy landscapes of solids. J. Chem. Phys. 130, 104504.ADSGoogle Scholar
  65. Ogitsu T., Gygi F., Reed J., Motome Y., Schwegler E., Galli G. (2009). Imperfect Crystal and Unusual Semiconductor: boron, a Frustrated Element. J. Am. Chem. Soc. 131, 1903–1909.Google Scholar
  66. Ono S., Kikegawa T., Ohishi Y. (2005). A high-pressure and high-temperature synthesis of platinum carbide. Sol. St. Comm. 133, 55–59.ADSGoogle Scholar
  67. Ono S., Kikegawa T., Ohishi Y. (2007). High-pressure phase transition of CaCO3. Am. Mineral. 92, 1246–1249.Google Scholar
  68. Ono S., Kikegawa T., Ohishi Y., Tsuchiya J. (2005). Post-aragonite phase transformation in CaCO3 at 40 GPa, Am. Mineral. 90, 667–671.Google Scholar
  69. Ono S., Oganov A.R., Brodholt J.P., Vocadlo L., Wood I.G., Glass C.W., Côté A.S., Price G.D. (2007). High-pressure phase transformations of FeS: novel phases at conditions of planetary cores. Earth Planet. Sci. Lett. 272, 481–487.ADSGoogle Scholar
  70. Pannetier J., Bassasalsina J., Rodriguez-Carva jal J., Caignaert V. (1990) Prediction of crystal structures from crystal chemistry rules by simulated annealing. Nature, 346, 343–345.ADSGoogle Scholar
  71. Perdew J.P., Burke K., Ernzerhof M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868.ADSGoogle Scholar
  72. Pickard C.J., Needs R.J. (2006). High-pressure phases of silane. Phys. Rev. Lett. 97, art. 045504.ADSGoogle Scholar
  73. Sanloup C., Schmidt B.C., Perez E.M.C., Jambon A., Gregoryanz E., Mezouar M. (2005). Retention of xenon in quartz and Earth's missing xenon. Science 310, 1174–1177.ADSGoogle Scholar
  74. Schönborn S., Goedecker S., Roy S., Oganov A.R. (2009). The performance of minima hopping and evolutionary algorithms for cluster structure prediction. J. Chem. Phys. 130, 144108.ADSGoogle Scholar
  75. Schön J.C., Jansen M. (1996) First step towards planning of syntheses in solid-state chemistry: determination of promising structure candidates by global optimization. Angew. Chem. – Int. Ed. 35, 1287–1304.Google Scholar
  76. Serra S., Chiarotti G., Scandolo S., Tosatti E. (1998). Pressure-induced magnetic collapse and metallization of molecular oxygen: the ζ-O2 phase. Phys. Rev. Lett. 80, 5160–5163.ADSGoogle Scholar
  77. Shimizu K., Suhara K., Ikumo M., Eremets M.I., Amaya K. (1998). Superconductivity in oxygen. Nature 393, 767–769.ADSGoogle Scholar
  78. Sluiter M.H.F., Colinet C., Pasturel A. (2006). Ab initio calculation of phase stability in Au-Pd and Ag-Pt alloys. Phys. Rev. B73, 174204.ADSGoogle Scholar
  79. Soler J.M., Artacho E., Gale J.D., Garcia A., Junquera J., Ordejon P., Sanchez-Portal D. (2002). The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14, 2745–2779.ADSGoogle Scholar
  80. Solozhenko V.L., Kurakevych O.O., Oganov A.R. (2008). On the hardness of a new boron phase, orthorhombic γ-B28. J. Superhard Mater. 30, 428–429.Google Scholar
  81. Steudel R., Wong M.W. (2007). Dark-red O8 molecules in solid oxygen: rhomboid clusters, not S8-like rings. Angew. Chem. Int. Ed. 46, 1768–1771.Google Scholar
  82. Tsagareishvili O.A., Chkhartishvili L.S., Gabunia D.L. (2009). Apparent low-frequency charge capacitance of semiconducting boron. Semiconductors 43, 14–20.ADSGoogle Scholar
  83. Urusov V.S., Dubrovinskaya N.A., Dubrovinsky L.S. (1990). Generation of likely crystal structures of minerals. Moscow State University Press, Moscow.Google Scholar
  84. Valle M. (2005). STM3: a chemistry visualization platform. Z. Krist. 220, 585–588.Google Scholar
  85. Valle M., Oganov A.R. (2008). Crystal structure classifier for an evolutionary algorithm structure predictor. IEEE Symposium on Visual Analytics Science and Technology (October 21–23, Columbus, OH), pp. 11–18.Google Scholar
  86. van Setten M.J., Uijttewaal M.A., de Wijs G.A., de Groot R.A. (2007) Thermodynamic stability of boron: The role of defects and zero point motion. J. Am. Chem. Soc. 129, 2458–2465.Google Scholar
  87. Wang Y, Oganov AR (2008) Research on the evolutionary prediction of very complex crystal structures. IEEE Computational Intelligence Society Walter Karplus. Summer Research Grant 2008 Final Report.
  88. Weck G., Desgreniers S., Loubeyre P., Mezouar M. (2009). Single-crystal structural characterization of the metallic phase of oxygen. Phys. Rev. Lett. 102, 255503.ADSGoogle Scholar
  89. Wentorf, R.H. (1965) Boron: another form. Science 147, 49–50.ADSGoogle Scholar
  90. Woodley S.M. (2004). Prediction of crystal structures using evolutionary algorithms and related techniques. Struct. Bond. 110, 95–132.Google Scholar
  91. Woodley S.M., Battle P.D., Gale J.D., Catlow C.R.A. (1999). The prediction of inorganic crystal structures using a genetic algorithm and energy minimization. Phys. Chem. Chem. Phys. 1, 2535–2542.Google Scholar
  92. Yoo C.S., Cynn H., Gygi F., Galli G., Iota V., Nicol M., Carlson S., Hausermann D., Mailhiot C. (1999). Crystal structure of carbon dioxide at high pressure: “Superhard” polymeric carbon dioxide. Phys. Rev. Lett. 83, 5527–5530.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Artem R. Oganov
    • 1
    • 2
  • Yanming Ma
    • 3
  • Andriy O. Lyakhov
    • 1
  • Mario Valle
    • 4
  • Carlo Gatti
    • 5
  1. 1.Department of Geosciences, Department of Physics and Astronomy, and New York Center for Computational SciencesState University of New YorkStony BrookUSA
  2. 2.Geology DepartmentMoscow State UniversityMoscowRussia
  3. 3.National Lab of Superhard MaterialsJilin UniversityChangchunP. R. China
  4. 4.Data Analysis and Visualization Group, Swiss National Supercomputing Centre CSCS)Cantonale Galleria 2Switzerland
  5. 5.CNR-ISTM, Istituto di Scienze e Tecnologie Molecolarivia Golgi 19Italy

Personalised recommendations