Skip to main content

Effect of Spin Transitions in Iron on Structure and Properties of Mantle Minerals

  • Conference paper
  • First Online:
High-Pressure Crystallography

Abstract

Abstract Iron is an important element in Earth lower mantle minerals. At conditions of the deep Earth’s interior iron ions could undergo high-to-low spin crossover. We discuss evolution of the spin state of iron in ferropericlase (Mg,Fe)O, silicate perovskite and garnet (Mg,Fe)SiO3 at high pressures and temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Badro J, Rueff J-P, Vankó G, Monaco G, Fiquet G and Guyot F (2004) Electronic transitions in perovskite: Possible non-convecting layers in the lower mantle. Science 305:383–386.

    Article  ADS  Google Scholar 

  • Bolvin H and Kahn O (1995) Ising model for low-spin high-spin transitions in molecular compounds; within and beyond the mean-field approximation. Chem Phys 192:295–305.

    Article  ADS  Google Scholar 

  • Burns RG (1970) Mineralogical Applications of Crystal Field. Cambridge University Press, Cambridge.

    Google Scholar 

  • Jepchoat AP, Hriljac JA, McCammon CA, O’Neill HStS, Rubie DC and Finger LW (1999) High-resolution X-ray powder diffraction and Rietveld refinement of two (Mg0.95Fe0.05)SiO3 perovskite samples synthesized under different oxygen fugacity conditions. Am Mineral 8:214–220.

    Google Scholar 

  • Goncharov AF, Haugen BD, Struzhkin VV, Beck P and Jacobsen S (2008) Radiative conductivity in the Earth’s lower mantle. Nature 456:231–234.

    Article  ADS  Google Scholar 

  • Hatch DM and Ghose S (1989) Symmetry analysis of the phase transition and twinning in MgSiO3 garnet: Implications to mantle mineralogy. Am Mineral 74:1221–1224.

    Google Scholar 

  • Horiuchi H, Ito E and Weidner DJ (1987) Perovskite-type MgSiO3: Single-crystal X-ray diffraction study. Am Mineral 72:357–360.

    Google Scholar 

  • Huggins FE (1975) The 3d levels of ferrous iron in silicate garnets. Am Mineral 60:316–319.

    Google Scholar 

  • Ingalls R (1964) Electric-field gradient tensor in ferrous compounds. Phys Rev 133A:787–795.

    Article  ADS  Google Scholar 

  • Keppler H, McCammon CA and Rubie DC (1994) Crystal-field and charge-transfer spectra of (Mg,Fe)SiO3 perovskite. Am Mineral 79:1215–1218.

    Google Scholar 

  • Keppler H, Dubrovinsky LS, Narygina OV and Kantor I (2009) Optical absorption and radiative thermal conductivity of silicate perovskite to 125 gigapascals. Science 322:1529–1532.

    Article  ADS  Google Scholar 

  • Lin JF, Struzhkin VV, Jacobsen SD, Hu MY, Chow P, Kung J, Liu H, Mao HK and Hemley RJ (2005) Spin transition of iron in magnesiowüstite in the Earth's lower mantle. Nature 436:377–380.

    Article  ADS  Google Scholar 

  • McCammon CA, Rubie DC, Ross II CR, Sieifert F and O’Neill HStC (1992) Mössbauer spectra of 57Fe0.05Mg0.95SiO3 perovskite at 80 and 298 K. Am Mineral 77:894–897.

    Google Scholar 

  • McCammon CA (1998) The crystal chemistry of ferric iron in Fe0.05Mg0.95SiO3 perovskite as determined by Mössbauer spectroscopy in the temperature range 80–293 K. Phys Chem Minerals 25:292–300.

    Article  ADS  Google Scholar 

  • McCammon CA, Kantor IYu, Narygina OV, Rouquette J, Ponkratz U, Sergueev I, Mezouar M, Prakapenka V and Dubrovinsky LS (2008) Exceptional stability of intermediate-spin ferrous iron in lower mantle perovskite. Nature Geosci 1:684–687.

    Article  ADS  Google Scholar 

  • Sherman DM (1988) Structural and Magnetic Phase Transitions in Minerals, Advances in Physical Geochemistry. Ghose S, Coey JMD and Salje E. Springer (ed) New York 7:113–128.

    Google Scholar 

  • Speziale S, Milner A, Lee VE, Clark SM, Pasternak MP, and Jeanloz R (2005) Iron spin transition in Earth’s mantle. Proc Natl Acad Sci U S A 102:17918–17922.

    Article  ADS  Google Scholar 

  • Sturhahn W, Jackson JM and Lin J-F (2006) The spin state of iron in minerals of Earth’s lower mantle. Geophys Res Lett 32: L12307.

    Article  ADS  Google Scholar 

  • Tsuchiya T, Wentzcovitch RM, da Silva CRS and de Gironcoli S (2006) Spin transition in magnesiowüstite in earth’s lower mantle. Phys Rev Lett 96:198501.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Dubrovinsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Dubrovinsky, L., Narygina, O., Kantor, I. (2010). Effect of Spin Transitions in Iron on Structure and Properties of Mantle Minerals. In: Boldyreva, E., Dera, P. (eds) High-Pressure Crystallography. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9258-8_20

Download citation

Publish with us

Policies and ethics