Skip to main content

The Development of a New Means of Representation: Goals and Milestones

  • Chapter
  • First Online:
The Genesis of Feynman Diagrams

Part of the book series: Archimedes ((ARIM,volume 26))

  • 1527 Accesses

Abstract

Two of the principal aims of this study were to reconstruct the route that led Feynman, between approximately 1946 and 1948, to devise his new method of diagrams and to evaluate what was achieved. In the preceding sections I showed how Feynman developed his diagrams in a series of comprehensible steps, and that his primary consideration was to solve important theoretical problems of the theory of quantum electrodynamics (QED) as it then stood. This goal was finally achieved to a satisfactory extent by Freeman J. Dyson’s systematization of Feynman’s results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Dirac Equation a, 12, see Fig. 4.16.

  2. 2.

    See, e. g., Dirac (1935, p. 271); cf. Dirac (1930).

  3. 3.

    Schweber (1986a, p. 460); Schweber (1994, pp. 387/388); Feynman (1966, pp. 702, 705, 706); Weiner (1966, p. 32).

  4. 4.

    Cf. Wheeler and Feynman (1945, 1949).

  5. 5.

    Cf. Galison (1998).

  6. 6.

    Bopp 1940, 1942, McManus 1948, cf. see also footnote 4 in CutOffCl.

  7. 7.

    Weiner (1966); see also Schweber 1994.

  8. 8.

    For example, “simply rewriting expressions in a simpler form” (STQED, p. 776); “using no new ideas” (SM, p. 1754); “[Tomonaga, Schwinger, and Feynman] kept the physical basis of the theory precisely as it had been laid down by Dirac, and only changed the mathematical superstructure” (Dyson 1965, p. 589).

References

  • Dirac Equation b. (Ca. 1946). Second series of selected folios from Box 11, Folder 2.

    Google Scholar 

  • Dirac Equation h. (Ca. 1947). Eighth series of selected folios from Box 11, Folder 2.

    Google Scholar 

  • Space-Time Approach to Quantum Electrodynamics. (Ca. 1947). Series of selected folios from Box 12, Folder 9.

    Google Scholar 

  • Bopp, F. (1940). ‘Eine lineare Theorie des Elektrons’. In: Annalen der Physik 38, pp. 345–384.

    Article  MathSciNet  ADS  Google Scholar 

  • Bopp, F. (1942). ‘Lineare Theorie des Elektrons. II’. In: Annalen der Physik 42, pp. 573–608.

    MathSciNet  Google Scholar 

  • Breit, G. (1928). ‘An Interpretation of Dirac’s Theory of the Electron’. In: Proceedings of the National Academy of Sciences of the United States of America 14.7, pp. 553–559.

    Google Scholar 

  • Cartwright, N. (1983). How the Laws of Physics Lie. Oxford: Clarendon Press.

    Book  Google Scholar 

  • Dirac, P. A. M. (1930). ‘A Theory of Electrons and Protons’. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 126.801, pp. 360–365.

    Google Scholar 

  • Dirac, P. A. M. (1935). The Principles of Quantum Mechanics by P. A. M. Dirac. 2nd ed. Oxford: Clarendon Press.

    Google Scholar 

  • Dyson, F. J. (1965). ‘Tomonaga, Schwinger, and Feynman Awarded Nobel Prize for Physics’. In: Science. 3rd ser. 150.3696 (Oct. 1965), pp. 588–589.

    Google Scholar 

  • Feynman, R. P. (1949). ‘The Theory of Positrons’. In: Physical Review 76.6 (Sept. 1949), pp. 749–759.

    Article  MathSciNet  Google Scholar 

  • Feynman, R. P. (1966). ‘The Development of the Space-Time View of Quantum Electrodynamics’. In: Science 153.3737. Nobel lecture, pp. 699–708.

    Article  Google Scholar 

  • Galison, P. (1998). ‘Feynman’s War: Modelling Weapons, Modelling Nature’. In: Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics 29.3 (Sept. 1998), pp. 391–434.

    Article  Google Scholar 

  • Giere, R. N. (1996). ‘Visual Models and Scientific Judgement’. In: Picturing Knowledge: Historical and Philosophical Problems Concerning the Use of Art in Science. Ed. by B. Baigrie. Toronto, ON University of Toronto Press, pp. 267–302.

    Google Scholar 

  • McManus, H. (1948). ‘Classical Electrodynamics without Singularities’. In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 195.1042, pp. 323–336.

    MathSciNet  Google Scholar 

  • Schweber, S. S. (1986a). ‘Feynman and the Visualization of Space-Time Processes’. In: Reviews of Modern Physics 58.2, pp. 449–508.

    Article  MathSciNet  Google Scholar 

  • Schweber, S. S. (1994). QED and the Men Who Made It: Dyson, Feynman, Schwinger, and Tomonaga. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Wheeler, J. A. and R. P. Feynman (1945). ‘Interaction with the Absorber as the Mechanism of Radiation’. In: Reviews of Modern Physics 17.2–3 (Apr. 1945), pp. 157–181.

    Article  Google Scholar 

  • Schrödinger, E. (1930). ‘Über die kräftefreie Bewegung in der relativistischen Quantenmechanik’. In: Sonderausgabe aus den Sitzungsberichten der Preussischen Akademie der Wissenschaften, Phys. Math. Klasse 24. Berlin: Verlag der Akademie derWissenschaften in Kommission beiWalter de Gruyter u. Co. Reprinted in Schrödinger 1984, pp. 357–368, 418–428.

    Google Scholar 

  • Weiner, C. (1966a). ‘Interview with Dr. Richard Feynman, March 4 to June 28, 1966, Vol. 2’. Niels Bohr Library & Archives, American Institute of Physics, College Park, MD.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Wüthrich .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wüthrich, A. (2010). The Development of a New Means of Representation: Goals and Milestones. In: The Genesis of Feynman Diagrams. Archimedes, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9228-1_7

Download citation

Publish with us

Policies and ethics