Quantum Electrodynamics Without Feynman Diagrams

Chapter
Part of the Archimedes book series (ARIM, volume 26)

Abstract

If one compares Feynman diagrams with other diagrammatic representations of the same phenomena, one can discern the change in the conception and representation of the phenomena that silently occurred while Feynman diagrams were being developed by Feynman and then systematized by Freeman J. Dyson. In some publications, diagrammatic representations occupy centre stage, which testifies to their importance in the context of quantum electrodynamics (QED). In this section we will see that some authors even explicitly mention that improving diagrammatic representations was one of their principal goals.

Keywords

Intermediate State Feynman Diagram Radiative Correction Quantum Electrodynamic Compton Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Advanced Quantum Mechanics (at Cornell). (ca. 1948). Series of selected folios from Box 7, Folder 4.Google Scholar
  2. Bethe, H. A. (1947). ‘The Electromagnetic Shift of Energy Levels’. In: Physical Review 72.4 (Aug. 1947), pp. 339–341.CrossRefGoogle Scholar
  3. Compton, A. H. (1923). ‘A Quantum Theory of the Scattering of X-rays by Light Elements’. In: Physical Review 21.5 (May 1923), pp. 483–502.CrossRefGoogle Scholar
  4. Devoto, A. and D. Duke (1984). ‘Table of integrals and formulae for Feynman diagram calculations’. In: La Rivista del Nuovo Cimento (1978–1999) 7.6 (June 1984), pp. 1–39.MathSciNetCrossRefGoogle Scholar
  5. Euler, H. (1936). ‘Über die Streuung von Licht an Licht nach der Diracschen Theorie’. In: Annalen der Physik 418.5, pp. 398–448.ADSCrossRefGoogle Scholar
  6. Halpern, O. (1933). ‘Scattering Processes Produced by Electrons in Negative Energy States’. In: Physical Review 44.10 (Nov. 1933), pp. 855–856.CrossRefGoogle Scholar
  7. Heisenberg, W. (1934). ‘Bemerkungen zur Diracschen Theorie des Positrons’. In: Zeitschrift für Physik A Hadrons and Nuclei 90.3 (Mar. 1934), pp. 209–231.ADSGoogle Scholar
  8. Kaiser, D. (2005). Drawing Theories Apart: The Dispersion of Feynman Diagrams in Postwar Physics. Chicago: The University of Chicago Press.MATHGoogle Scholar
  9. Karplus, R. and M. Neuman (1950). ‘Non-Linear Interactions Between Electromagnetic Fields’. In: Physical Review 80.3 (Nov. 1950), pp. 380–385.MathSciNetCrossRefGoogle Scholar
  10. Mills, R. (1993). ‘Tutorial on Infinities in QED’. In: Renormalization. From Lorentz to Landau (and Beyond). Ed. by L. M. Brown. New York: Springer.Google Scholar
  11. Schönberg, M. (1946). ‘Classical Theory of the Point Electron’. In: Physical Review 69.5–6 (Mar. 1946), pp. 211–224.CrossRefGoogle Scholar
  12. Stueckelberg, E. C. G. (1941). ‘Remarque sur la création de paires de particules en théorie de relativité’. In: Helvetica Physica Acta 14, pp. 588–594.MathSciNetGoogle Scholar
  13. Weisskopf, V. F. (1939). ‘On the Self-Energy and the Electromagnetic Field of the Electron’. In: Physical Review 56.1 (July 1939), pp. 72–85.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.University of Bern, History and Philosophy of Science, Exact SciencesBernSwitzerland

Personalised recommendations