The Biogeochemistry of Biomining

  • David Barrie Johnson


Biomining is a technology that harnesses the abilities of certain microorganisms to accelerate the dissolution of minerals, thereby facilitating the recovery of metals of value. In full-scale commercial operations, biomining currently mainly involves using consortia of acidophilic bacteria and archaea to bring about the oxidative dissolution of sulfide minerals. The major ore reserves of many base metals, such as copper and zinc, are sulfidic, and other valuable metals, such as gold and uranium, may also be associated with minerals such as pyrite (FeS2). Where the destruction of minerals leads to the target metal being solubilised, the process of oxidative dissolution is referred to as bioleaching, whereas if the metal become more accessible to chemical extraction but remains in an insoluble form, the process is known more correctly as biooxidation (Fig. 19.1).


Ferric Iron Sulfide Mineral Mineral Dissolution Oxidative Dissolution Leach Liquor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author is grateful to the Royal Society (U.K.) for the provision of an Industrial Fellowship.


  1. Bacelar-Nicolau P, Johnson DB (1999) Leaching of pyrite by acidophilic heterotrophic ­iron-­oxidizing bacteria in pure and mixed cultures. Appl Environ Microbiol 65:585–590PubMedGoogle Scholar
  2. Batty JD, Rorke GV (2006) Development and commercial demonstration of the BioCOPTM ­thermophile process. Hydrometallurgy 83:83–89CrossRefGoogle Scholar
  3. Bridge TAM, Johnson DB (1998) Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria. Appl Environ Microbiol 64:2181–2186PubMedGoogle Scholar
  4. Bridge TAM, Johnson DB (2000) Reductive dissolution of ferric iron minerals by Acidiphilium SJH. Geomicrobiol J 17:193–206CrossRefGoogle Scholar
  5. Brierley CL (2008a) How will biomining be applied in future? Trans Nonferrous Met Soc China 18:1302–1310CrossRefGoogle Scholar
  6. Brierley JA (2008b) A perspective on developments in biohydrometallurgy. Hydrometallurgy 94:2–7CrossRefGoogle Scholar
  7. Coto O, Galizia F, Hernandez I, Marrero J, Donati E (2008) Cobalt and nickel recoveries from lateritic tailings by organic and inorganic bio-acids. Hydrometallurgy 94:18–22CrossRefGoogle Scholar
  8. Coupland K, Johnson DB (2008) Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria. FEMS Microbiol Lett 279:30–35PubMedCrossRefGoogle Scholar
  9. Davis-Belmar CS, Nicolle JLC, Norris PR (2008) Ferrous iron oxidation and leaching of copper ore with halotolerant bacteria in ore columns. Hydrometallurgy 94:144–147CrossRefGoogle Scholar
  10. Donati ER, Sand W (eds) (2007) Microbial processing of metal sulfides. Springer, Dordrecht, The NetherlandsGoogle Scholar
  11. Dopson M, Halinen A-K, Rahunen N, Ozkaya B, Sahinkaya E, Kaksonen AH, Lindstrom EB, Puhakka JA (2006) Mineral and iron oxidation at low temperatures by pure and mixed cultures of acidophilic microorganisms. Biotechnol Bioeng 97:1205–1215CrossRefGoogle Scholar
  12. Galleguillos P, Hallberg KB, Johnson DB (2009) Microbial diversity and genetic response to stress conditions of extremophilic bacteria isolated from the Escondida copper mine. Adv Mater Res 71–73:55–58CrossRefGoogle Scholar
  13. Ghauri MA, Okibe N, Johnson DB (2007) Attachment of acidophilic bacteria to solid surfaces: the significance of species and strain variations. Hydrometallurgy 85:72–80CrossRefGoogle Scholar
  14. Golyshina OV, Pivovarova TA, Karavaiko GI, Kondrat’eva TF, Moore ERB, Abraham WR, Lunsdorf H, Timmis KN, Yakimov MM, Golyshin PN (2000) Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int J Syst Evol Microbiol 50:997–1006PubMedCrossRefGoogle Scholar
  15. Hallberg KB, Johnson DB (2001) Biodiversity of acidophilic prokaryotes. Adv Appl Microbiol 49:37–84PubMedCrossRefGoogle Scholar
  16. Hallberg KB, González-Toril E, Johnson DB (2010) Acidithiobacillus ferrivorans, sp. nov., facultatively anaerobic, psychrotolerant iron- and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14:9–19PubMedCrossRefGoogle Scholar
  17. Harvey TJ, Bath M (2007) The GeoBiotics GEOCOATR technology – progress and challenges. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Heidelberg, pp 97–112CrossRefGoogle Scholar
  18. Hiroyoshi N, Miki H, Hirajima T, Tsunekawa M (2000) A model for ferrous-promoted chalcopyrite leaching. Hydrometallurgy 57:31–38CrossRefGoogle Scholar
  19. Johnson DB (2001) Importance of microbial ecology in the development of new mineral technologies. Hydrometallurgy 59:147–158CrossRefGoogle Scholar
  20. Johnson DB (2009) Extremophiles: acid environments. In: Schaechter M (ed) Encyclopaedia of microbiology. Elsevier, Oxford, pp 107–126CrossRefGoogle Scholar
  21. Johnson DB, Hallberg KB (2007) Techniques for detecting and identifying acidophilic mineral-oxidising microorganisms. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Heidelberg, pp 237–262CrossRefGoogle Scholar
  22. Johnson DB, Hallberg KB (2008) Carbon, iron and sulfur metabolism in acidophilic micro-organisms. Adv Microbiol Physiol 54:202–256Google Scholar
  23. Johnson DB, McGinness S (1991) Ferric iron reduction by acidophilic heterotrophic bacteria. Appl Environ Microbiol 57:207–211PubMedGoogle Scholar
  24. Johnson DB, Stallwood B, Kimura S, Hallberg KB (2006) Isolation and characterization of Acidicaldus organovorus, gen. nov., sp. nov.; a novel sulfur-oxidizing, ferric iron-reducing thermo-acidophilic heterotrophic Proteobacterium. Arch Microbiol 185:212–221PubMedCrossRefGoogle Scholar
  25. Kelly DP (1978) Bioenergetics of chemolithotrophic bacteria. In: Bull AT, Meadows PM (eds) Companion to microbiology: selected topics for further discussion. Longman, London, pp 363–386Google Scholar
  26. Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov., and Thermothiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516PubMedCrossRefGoogle Scholar
  27. Koschorreck M (2008) Microbial sulphate reduction at a low pH. FEMS Microbiol Ecol 64:329–342PubMedCrossRefGoogle Scholar
  28. Mikkelsen D, Kappler U, McEwan AG, Sly LI (2006) Archaeal diversity in two thermophilic chalcopyrite bioleaching reactors. Environ Microbiol 8:2050–2055PubMedCrossRefGoogle Scholar
  29. Morin DHR, d’Hugues P (2007) Bioleching of a cobalt-containing pyrite in stirred reactors: a case study from the laboratory scale to industrial application. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Heidelberg, pp 35–56CrossRefGoogle Scholar
  30. Morin D, Pinches T, Huisman J, Frias C, Norberg A, Forssberg E (2008) Progress after three years of BioMinE – research and technical development project for a global assessment of biohydrometallurgical processes applied to European non-ferrous metal resources. Hydrometallurgy 94:58–68CrossRefGoogle Scholar
  31. Norris PR (2007) Acidophilic diversity in mineral sulfide oxidation. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Heidelberg, pp 199–216CrossRefGoogle Scholar
  32. Norris PR, Ingledew WJ (1992) Acidophilic bacteria: adaptations and applications. In: Herbert RA, Sharp RJ (eds) Molecular biology and biotechnology of extremophiles. Blackie, Glasgow, pp 115–142CrossRefGoogle Scholar
  33. Okibe N, Johnson DB (2004) Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: the significance of microbial interactions. Biotechnol Bioeng 87:574–583PubMedCrossRefGoogle Scholar
  34. Okibe N, Gericke M, Hallberg KB, Johnson DB (2003) Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred tank bioleaching operation. Appl Environ Microbiol 69:1936–1943PubMedCrossRefGoogle Scholar
  35. Olson GJ, Brierley JA, Brierley CL (2003) Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industry. Appl Microbiol Biotechnol 63:249–257PubMedCrossRefGoogle Scholar
  36. Rawlings DE (ed) (1997) Biomining: theory, microbes and industrial processes. Springer/Landes Biosciences, Georgetown, TXGoogle Scholar
  37. Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91PubMedCrossRefGoogle Scholar
  38. Rawlings DE (2005) Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb Cell Fact 4:13PubMedCrossRefGoogle Scholar
  39. Rawlings DE, Johnson DB (eds) (2007a) Biomining. Springer, HeidelbergGoogle Scholar
  40. Rawlings DE, Johnson DB (2007b) The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 153:315–324PubMedCrossRefGoogle Scholar
  41. Rawlings DE, Silver S (1995) Mining with microbes. Biotechnology 13:773–778CrossRefGoogle Scholar
  42. Rawlings DE, Tributsch H, Hansford GS (1999) Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145:5–13PubMedCrossRefGoogle Scholar
  43. Rawlings DE, Dew D, du Plessis C (2003) Biomineralization of metal-containing ores and concentrates. Trends Biotechnol 21:38–44PubMedCrossRefGoogle Scholar
  44. Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sufide oxidation. Appl Microbiol Biotechnol 63:239–248PubMedCrossRefGoogle Scholar
  45. Schippers A (2007) Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification. In: Donati ER, Sand W (eds) Microbial processing of metal sulfides. Springer, Dordrecht, The Netherlands, pp 3–33CrossRefGoogle Scholar
  46. Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect ­mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321PubMedGoogle Scholar
  47. Sehlin HM, Lindstrom EB (1992) Oxidation and reduction of arsenic by Sulfolobus acidocaldarius strain BC. FEMS Microbiol Lett 93:8–92Google Scholar
  48. Steudel R (2000) The chemical sulfur cycle. In: Lens P, Hulshoff Pol L (eds) Environmental technologies to treat sulfur pollution: principles and engineering. International Association on Water Quality, London, pp 1–31Google Scholar
  49. Stumm W, Morgan JJ (1981) Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters. Wiley, New YorkGoogle Scholar
  50. Tributsch H, Rojas-Chapana J (2007) Biological strategies for obtaining energy by degrading sulfide minerals. In: Rwalings DE, Johnson DB (eds) Biomining. Springer, Heidelberg, pp 263–280CrossRefGoogle Scholar
  51. Valdes J, Pedroso I, Quatrini R, Holmes DS (2008) Comparative genome analysis of Acidithiobacillus ferrooxidans, A. thiooxidans and A. caldus: insights into their metabolism and ecophysiology. Hydrometallurgy 94:180–184CrossRefGoogle Scholar
  52. Wakeman K, Auvinen H, Johnson DB (2008) Microbiological and geochemical dynamics in simulated heap leaching of a polymetallic sulfide ore. Biotechnol Bioeng 101:739–750PubMedCrossRefGoogle Scholar
  53. Watling HR (2006) The bioleaching of sulphide minerals with emphasis on copper sulphides – a review. Hydrometallurgy 84:81–108CrossRefGoogle Scholar
  54. Welham NJ, Malatt KA, Vukcevic S (2000) The effect of solution speciation on iron-sulphur-arsenic-chloride systems at 298°K. Hydrometallurgy 57:209–223CrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  1. 1.School of Biological SciencesBangor UniversityBangorUK

Personalised recommendations