Skip to main content

Synergistic Roles of Microorganisms in Mineral Precipitates Associated with Deep Sea Methane Seeps

  • Chapter
  • First Online:
Geomicrobiology: Molecular and Environmental Perspective

Abstract

The discovery of huge deep sea methane reservoirs in the form of ice-like solid crystals of methane clathrate hydrates (methane hydrates or gas hydrate for short) and carbonate deposits at the Hydrate Ridge in the Cascadia subduction zone (Suess et al. 1985) has stimulated global exploration and extensive studies of cold methane seeps and vents associated with the hydrate deposits (Paull and Dillon 2001; Trehu et al. 2004). Many deep sea methane hydrate deposits have been discovered around the world, for instance, in the Gulf of Mexico (Pohlman et al. 2008; Sassen et al. 1998, 2004), Monterey Bay of California (Gieskes et al. 2005; Lorenson et al. 2002; Stakes et al. 1999), Black Sea (Peckmann et al. 2001), Sea of Okhotsk, Eastern Siberia (Greinert and Derkachev 2004), the Gulf of Cadiz (Stadnitskaia et al. 2008), the Kuroshima Knoll of southern part of the Ryukyu Arc (Takeuchi et al. 2007), and South China Sea (Han et al. 2008; Lu 2007). It has been estimated that there are about 1,000 ∼24,000 Gt of carbon in global methane hydrate zones (Dickens et al. 1997; Harvey and Huang 1995; Kvenvolden 1988; MacDonald 1990; Makogon and Makogon 1997). Methane hydrates have the potential to be a future energy source however methane is also a greenhouse gas. The release of methane from the methane hydrate can have a profound effect on the global climate (Kvenvolden 1998). In geological record, the rapid global temperature change at the Paleocene-Eocene boundary at ∼55 millions of years ago, the Paleocene–Eocene Thermal Maximum (PETM), may be related to catastrophic methane release from sea sediments (Dickens et al. 1995; Katz et al. 2001; Zachos et al. 2005). At the interface between uprising methane from dissociation of methane hydrate and sulfate from sea water, a distinct microbial consortium mediates anaerobic oxidation of methane (AOM) through a net reaction of

$$ {\text{CH}}_{4}+{\text{SO}}_{4}{}^{2-}\to {\text{HS}}^{-}+{\text{HCO}}_{3}{}^{-}+{\text{H}}_{2}\text{O}.$$
(15.1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berner RA (1984) Sedimentary pyrite formation – an update. Geochim Cosmochim Acta 48:605–615

    Article  CAS  Google Scholar 

  • Birgel D, Peckmann J (2008) Aerobic methanotrophy at ancient marine methane seeps: a synthesis. Org Geochem 39:1659–1667

    Article  CAS  Google Scholar 

  • Birgel D, Peckmann J, Klautzsch S, Thiel V, Reitner J (2006) Anaerobic and aerobic oxidation of methane at Late Cretaceous seeps in the Western Interior Seaway, USA. Geomicrobiol J 23:565–577

    Article  CAS  Google Scholar 

  • Birgel D, Himmler T, Freiwald A, Peckmann J (2008) A new constraint on the antiquity of anaerobic oxidation of methane: Late Pennsylvanian seep limestones from southern Namibia. Geology 36:543–546

    Article  CAS  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  PubMed  CAS  Google Scholar 

  • Bohrmann G, Suess E, Greinert J (2002) Gas hydrate carbonates from Hydrate Ridge, Cascadia convergent margin: indicators of near-seafloor clathrate deposits. Proceedings of the fourth international conference on gas hydrates, Yokohama, Japan, pp 102–107

    Google Scholar 

  • Brazelton WJ, Schrenk MO, Kelley DS, Baross JA (2006) Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem. Appl Environ Microbiol 72:6257–6270

    Article  PubMed  CAS  Google Scholar 

  • Bryant MP, Wolin EA, Wolin MJ, Wolfe RS (1967) Methanobacillus Omelianskii a symbiotic association of 2 species of bacteria. Arch Mikrobiol 59:20–31

    Article  PubMed  CAS  Google Scholar 

  • Canfield DE, Jørgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, Thamdrup B, Hansen JW, Nielsen LP, Hall POJ (1993) Pathways of organic-carbon oxidation in 3 continental-margin sediments. Mar Geol 113:27–40

    Article  PubMed  CAS  Google Scholar 

  • Charlou JL, Fouquet Y, Bougault H, Donval JP, Etoubleau J, Jean-Baptiste P, Dapoigny A, Appriou P, Rona PA (1998) Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15d20’N fracture zone and the Mid-Atlantic Ridge. Geochim Cosmochim Acta 62:2323–2333

    Article  CAS  Google Scholar 

  • Claypool GE, Kvenvolden KA (1983) Methane and other hydrocarbon gases in marine sediment. Ann Rev Earth Planet Sci 11:299–327

    Article  CAS  Google Scholar 

  • Coleman ML, Raiswell R (1993) Microbial mineralization of organic-matter-mechanisms of self-organization and inferred rates of precipitiation of diagenetic minerals. Phil Trans R Soc Lond Ser A Math Phys Eng Sci 344:69–87

    Article  CAS  Google Scholar 

  • Dale AW, Regnier P, Knab NJ, Jorgensen BB, Van Cappellen P (2008) Anaerobic oxidation of methane (AOM) in marine sediments from the Skagerrak (Denmark): II. Reaction-transport modeling. Geochim Cosmochim Acta 72:2880–2894

    Article  CAS  Google Scholar 

  • Dickens GR, Oneil JR, Rea DK, Owen RM (1995) Dissociation of oceanic methane hydrate as a cause of the carbon-isotope excursion at the end of the Paleocene. Paleoceanography 10:965–971

    Article  Google Scholar 

  • Dickens GR, Paull CK, Wallace P (1997) Direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature 385:426–428

    Article  CAS  Google Scholar 

  • Dodony I, Posfai M, Buseck PR (1996) Structural relationship between pyrite and marcasite. Am Mineralog 81:119–125

    CAS  Google Scholar 

  • Falini G, Gazzano M, Ripamonti A (1996) Magnesium calcite crystallization from water-alcohol mixtures. Chem Commun 9:1037–1038

    Google Scholar 

  • Garcia JL, Patel BKC, Ollivier B (2000) Taxonomic phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe 6:205–226

    Article  PubMed  CAS  Google Scholar 

  • German CR, Von Damm KL (2004) Hydrothermal processes. In: Elderfield H (ed) Tretise on ­geochemistry, volume 6: the oceans and marine geochemistry. Elsevier, New York, pp 181–222

    Google Scholar 

  • Giblin AE, Howarth RW (1984) Porewater evidence for a dynamic sedimentary iron cycle in salt marshes. Limnol Oceanogr 29:47–63

    Article  CAS  Google Scholar 

  • Gieskes J, Mahn C, Day S, Martin JB, Greinert J, Rathburn T, McAdoo B (2005) A study of the chemistry of pore fluids and authigenic carbonates in methane seep environments: Kodiak Trench, Hydrate Ridge, Monterey Bay, and Eel River Basin. Chem Geol 220:329–345

    Article  CAS  Google Scholar 

  • Gogotsi Y, Libera JA, Guvenc-Yazicioglu A, Megaridis CM (2001) In situ multiphase fluid experiments in hydrothermal carbon nanotubes. Appl Phys Lett 79:1021–1023

    Article  CAS  Google Scholar 

  • Greinert J, Derkachev A (2004) Glendonites and methane-derived Mg-calcites in the Sea of Okhotsk, Eastern Siberia: implications of a venting-related ikaite/glendonite formation. Mar Geol 204:129–144

    Article  CAS  Google Scholar 

  • Greinert J, Bohrmann G, Suess E (2001) Gas hydrate-associated carbonates and methane-venting at hydrate ridge: classification, distribution, and origin of authigenic lithologies. In: Paull CK, Dillon WP (eds) Natural gas hydrates: occurrence, distribution, and detection. American Geophysical Union, Washington, DC, pp 99–113

    Chapter  Google Scholar 

  • Han XQ, Suess E, Huang YY, Wu NY, Bohrrnann G, Su X, Eisenhauer A, Rehder G, Fang YX (2008) Jiulong methane reef: microbial mediation of seep carbonates in the South China Sea. Mar Geol 249:243–256

    Article  Google Scholar 

  • Hardie LA (1987) Dolomitization – a critical view of some current views. J Sediment Petrol 57:166–183

    CAS  Google Scholar 

  • Harvey LDD, Huang Z (1995) Evaluation of the potential impact of methane clathrate destabilization on future global warming. J Geophys Res Atmosph 100(D2):2905–2926

    Article  CAS  Google Scholar 

  • Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S (2004) Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes. Science 306:1362–1364

    Article  PubMed  CAS  Google Scholar 

  • Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805

    Article  PubMed  CAS  Google Scholar 

  • Hoehler TM, Alperin MJ, Albert DB, Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment – evidence for a methanogen-sulfate reducer consortium. Glob Biogeochem Cycles 8:451–463

    Article  CAS  Google Scholar 

  • Howarth RW (1979) Pyrite – its rapid formation in a salt-marsh and its importance in ecosystem metabolism. Science 203:49–51

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey GA, McMullan RK (1967) Clathrate hydrates progress in inorganic chemistry, vol 8. Wiley, New York, pp 43–108

    Book  Google Scholar 

  • Jiang GQ, Kennedy MJ, Christie-Blick N (2003) Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature 426:822–826

    Article  PubMed  CAS  Google Scholar 

  • Jiang GQ, Kennedy MJ, Christie-Blick N, Wu HC, Zhang SH (2006) Stratigraphy, sedimentary structures, and textures of the late Neoproterozoic doushantuo cap carbonate in south China. J Sediment Res 76:978–995

    Article  CAS  Google Scholar 

  • Jørgensen BB (1982) Mineralization of organic-matter in the sea bed – the role of sulfate reduction. Nature 296:643–645

    Article  Google Scholar 

  • Jørgensen BB (2000) Bacteria and marine biogeochemistry. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer, New York, pp 173–207

    Google Scholar 

  • Jørgensen BB, Boetius A (2007) Feast and famine – microbial life in the deep-sea bed. Nat Rev Microbiol 5:770–781

    Article  PubMed  Google Scholar 

  • Kasten S, Jørgensen BB (2000) Sulfate reduction in marine sediments. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer, New York, pp 263–282

    Google Scholar 

  • Kasten S, Freudenthal T, Gingele FX, Schulz HD (1998) Simultaneous formation of iron-rich layers at different redox boundaries in sediments of the Amazon deep-sea fan. Geochim Cosmochim Acta 62:2253–2264

    Article  CAS  Google Scholar 

  • Katz ME, Cramer BS, Mountain GS, Katz S, Miller KG (2001) Uncorking the bottle: what triggered the Paleocene/Eocene thermal maximum methane release? Paleoceanography 16:549–562

    Article  Google Scholar 

  • Keir RS, Greinert J, Rhein M, Petrick G, Sultenfuss J, Furhaupter K (2005) Methane and methane carbon isotope ratios in the Northeast Atlantic including the Mid-Atlantic Ridge (50 degrees N). Deep-Sea Res Part I Oceanogr Res Papers 52:1043–1070

    Article  CAS  Google Scholar 

  • Kelley DS, Karson JA, Blackman DK, Fruh-Green GL, Butterfield DA, Lilley MD, Olson EJ, Schrenk MO, Roe KK, Lebon GT, Rivizzigno P (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N. Nature 412:145–149

    Article  PubMed  CAS  Google Scholar 

  • Kelley DS, Karson JA, Fruh-Green GL et al (2005) A erpentinite-hosted ecosystem: the lost city hydrothermal field. Science 307:1428–1434

    Article  PubMed  CAS  Google Scholar 

  • Knab NJ, Dale AW, Lettmann K, Fossing H, Jørgensen BB (2008) Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments. Geochim Cosmochim Acta 72:3746–3757

    Article  CAS  Google Scholar 

  • Kvenvolden KA (1988) Methane hydrate – a major reservoir of carbon in the shallow geosphere. Chem Geol 71:41–51

    Article  CAS  Google Scholar 

  • Kvenvolden KA (1998) A primer on the geological occurrence of gas hydrate. In: Henriet JP, Mienert J (eds) Gas hydrates relevance to world margin stability and climate change. Geological Society, London, pp 9–30

    Google Scholar 

  • Larrasoana JC, Roberts AP, Musgrave RJ, Gracia E, Pinero E, Vega M, Martinez-Rulz F (2007) Diagenetic formation of greigite and pyrrhotite in gas hydrate marine sedimentary systems. Earth Planet Sci Lett 261:350–366

    Article  CAS  Google Scholar 

  • Levin LA, James DW, Martin CM, Rathburn AE, Harris LH, Michener RH (2000) Do methane seeps support distinct macrofaunal assemblages? Observations on community structure and nutrition from the northern California slope and shelf. Mar Ecol Prog Ser 208:21–39

    Article  Google Scholar 

  • Lide DR (2004) Handbook of chemistry and physics. CRC Press, Boca Raton, FL

    Google Scholar 

  • Lippmann F (1973) Sedimentary carbonate minerals. Springer, New York

    Book  Google Scholar 

  • Lorenson TD, Kvenvolden KA, Hostettler FD, Rosenbauer RJ, Orange DL, Martin JB (2002) Hydrocarbon geochemistry of cold seeps in the Monterey Bay National Marine Sanctuary. Mar Geol 181:285–304

    Article  CAS  Google Scholar 

  • Lovley DR (2000) Fe(III) and Mn(IV) reduction. In: Lovley DR (ed) Environmental microbe-metal interactions. ASM Press, Washington, DC, pp 3–30

    Google Scholar 

  • Lu H (2007) Mineralogical and geochemical studies on sediments from Dongsha Area, South China Sea: evidences for gas hydrate occurrence. PhD dissertation, Sun Yat-Sen University, Guangzhou, China

    Google Scholar 

  • Luther GW (1991) Pyrite synthesis via polysulfide compounds. Geochim Cosmochim Acta 55:2839–2849

    Article  CAS  Google Scholar 

  • MacDonald GJ (1990) Role of methane clathrates in past and future climates. Clim Change 16:247–281

    Article  Google Scholar 

  • Makogon IF, Makogon YF (1997) Hydrates of hydrocarbons. Pennwell Books, Tulsa, Oklahoma, 482 p

    Google Scholar 

  • Mazzullo SJ (2000) Organogenic dolomitization in peritidal to deep-sea sediments. J Sediment Res 70:10–23

    Article  CAS  Google Scholar 

  • Megonigal JP, Hines ME, Visscher PT (2003) Anaerobic metabolism: linkages to trace gases and aerobic processes. In: Schlesinger WH (ed) Tretise on geochemistry, volume 8: biogeochemistry. Elsevier, New York, pp 317–424

    Chapter  Google Scholar 

  • Michaelis W, Seifert R, Nauhaus K et al (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297:1013–1015

    Article  PubMed  CAS  Google Scholar 

  • Murowchick JB, James B, Barnes HL (1986) Marcasite precipitation from hydrothermal solutions. Geochim Cosmochim Acta 50:2615–2629

    Article  CAS  Google Scholar 

  • Naehr TH, Eichhubl P, Orphan VJ, Hovland M, Paull CK, Ussler W, Lorenson TD, Greene HG (2007) Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: a comparative study. Deep-Sea Res Part II Top Stud Oceanogr 54:1268–1291

    Article  CAS  Google Scholar 

  • Niewöhner C, Hensen C, Kasten S, Zabel M, Schulz HD (1998) Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochim Cosmochim Acta 62:455–464

    Article  Google Scholar 

  • Orphan VJ, Hinrichs KU, Ussler W, Paull CK, Taylor LT, Sylva SP, Hayes JM, Delong EF (2001a) Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol 67:1922–1934

    Article  PubMed  CAS  Google Scholar 

  • Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2001b) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487

    Article  PubMed  CAS  Google Scholar 

  • Paull CK, Dillon WP (2001) Natural gas hydrates: occurrence, distribution, and detection. American Geophysical Union, Washington, DC, 315 p

    Google Scholar 

  • Peckmann J, Reimer A, Luth U, Luth C, Hansen BT, Heinicke C, Hoefs J, Reitner J (2001) Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Mar Geol 177:129–150

    Article  CAS  Google Scholar 

  • Pohlman JW, Ruppel C, Hutchinson DR, Downer R, Coffin RB (2008) Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico. Mar Petrol Geol 25:942–951

    Article  CAS  Google Scholar 

  • Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513

    Article  PubMed  CAS  Google Scholar 

  • Rickard D (1997) Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125 C: the rate equation. Geochim Cosmochim Acta 61:115–134

    Article  CAS  Google Scholar 

  • Rickard D, Luther GW (1997) H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125 C: the mechanism. Geochim Cosmochim Acta 61:135–147

    Article  CAS  Google Scholar 

  • Sassen R, MacDonald IR, Guinasso NL, Joye S, Requejo AG, Sweet ST, Alcala-Herrera J, DeFreitas D, Schink DR (1998) Bacterial methane oxidation in sea-floor gas hydrate: significance to life in extreme environments. Geology 26:851–854

    Article  CAS  Google Scholar 

  • Sassen R, Roberts HH, Carney R, Milkov AV, DeFreitas DA, Lanoil B, Zhang CL (2004) Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes. Chem Geol 205:195–217

    Article  CAS  Google Scholar 

  • Schoonen MAA, Barnes HL (1991a) Mechanisms of pyrite and marcasite formation from solution. 3. Hydrothermal processes. Geochim Cosmochim Acta 55:3491–3504

    Article  CAS  Google Scholar 

  • Schoonen MAA, Barnes HL (1991b) Reactions forming pyrite and marcasite from solution. 1. Nucleation of FeS2 below 100-degrees-C. Geochim Cosmochim Acta 55:1495–1504

    Article  CAS  Google Scholar 

  • Sloan ED (1998) Clathrate hydrates of natural gases. Marcel Dekker, New York, 705 p

    Google Scholar 

  • Stadnitskaia A, Nadezhkin D, Abbas B, Blinova V, Ivanov MK, Damste JSS (2008) Carbonate formation by anaerobic oxidation of methane: evidence from lipid biomarker and fossil 16S rDNA. Geochim Cosmochim Acta 72:1824–1836

    Article  CAS  Google Scholar 

  • Stakes DS, Orange D, Paduan JB, Salamy KA, Maher N (1999) Cold-seeps and authigenic ­carbonate formation in Monterey Bay, California. Mar Geol 159:93–109

    Article  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria in natural waters. Wiley, New York

    Google Scholar 

  • Suess E, Carson B, Ritger SD, Moore JC, Jones ML, Kulm LD, Cochrane GR (1985) Biological communities at vent sites along the subduction zone off Oregon. In: Jones ML (ed) The hydrothermal vents of the Eastern Pacific: an overview. Bulletin of the Biological Society of Washington, Washington, DC, pp 475–484

    Google Scholar 

  • Takeuchi R, Matsumoto R, Ogihara S, Machlyama H (2007) Methane-induced dolomite “chimneys” on the Kuroshima Knoll, Ryukyu Islands, Japan. J Geochem Explor 95:16–28

    Article  CAS  Google Scholar 

  • Theberge SM, Luther GW (1997) Determination of the electrochemical properties of a soluble aqueous FeS species present in sulfidic solutions. Aquat Geochem 3:191–211

    Article  CAS  Google Scholar 

  • Trehu AM, Flemings PB, Bangs NL, Chevallier J, Gracia E, Johnson JE, Liu CS, Liu XL, Riedel M, Torres ME (2004) Feeding methane vents and gas hydrate deposits at south Hydrate Ridge. Geophys Resear Lett 31:L23310. doi:10.1029/2004GL021286

    Article  Google Scholar 

  • Treude T, Boetius A, Knittel K, Wallmann K, Jøorgensen BB (2003) Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean. Mar Ecol Prog Ser 264:1–14

    Article  CAS  Google Scholar 

  • Treude T, Orphan V, Knittel K, Gieseke A, House CH, Boetius A (2007) Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic Black Sea. Appl Environ Microbiol 73:2271–2283

    Article  PubMed  CAS  Google Scholar 

  • Valentine DL, Reeburgh WS (2000) New perspectives on anaerobic methane oxidation. Environ Microbiol 2:477–484

    Article  PubMed  CAS  Google Scholar 

  • Whitaker M (1994) Correlation of natural gases with their sources. In: Magoon LB, Dow WG (eds) The petroleum system – from source to trap. American Association of Petroleum Geologists, Tulsa, Oklahoma, pp 261–284

    Google Scholar 

  • Zachos JC, Rohl U, Schellenberg SA et al (2005) Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308:1611–1615

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Author thanks NASA Astrobiology Institute (N07-5489), National Science Foundation (EAR-0810150, 0824890, 0958000), and Office of Basic Energy Science of U.S. Department of Energy for supporting my research. Author also thanks helps from Dr. Hiromi Konishi, Fangfu Zhang, Yubing Sun, and Jason Huberty of University of Wisconsin, and Dr. Hongfeng Lu and Prof. Xiaoming Sun of Sun Yat-Sen University. I also acknowledge journal of “Geology” for permitting me to use one photo (Fig. 15.1d), and Dr. Lu for using three photos (Fig. 15.1a–c) from his PhD dissertation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huifang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Xu, H. (2010). Synergistic Roles of Microorganisms in Mineral Precipitates Associated with Deep Sea Methane Seeps. In: Barton, L., Mandl, M., Loy, A. (eds) Geomicrobiology: Molecular and Environmental Perspective. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9204-5_15

Download citation

Publish with us

Policies and ethics