Skip to main content

Compositional, Physiological and Metabolic Variability in Microbial Communities Associated with Geochemically Diverse, Deep-Sea Hydrothermal Vent Fluids

  • Chapter
  • First Online:
Geomicrobiology: Molecular and Environmental Perspective

Abstract

Deep-sea hydrothermal vent environments represent one of the most physically and chemically diverse biomes in Earth. The chemical and thermal gradients (e.g., >350°C across distances as small as several centimeters in active chimneys) provide a wide range of niches for microbial communities living there (Huber and Holden 2008; Nakagawa and Takai 2008; Reysenbach et al. 2000; Takai et al. 2006a). Psychrophiles, mesophiles, thermophiles and hyperthermophiles (organisms growing best from 4°C to above 80°C) thrive by chemolithoautotrophy or heterotrophy, utilizing abundant available inorganic and organic chemical energy, carbon and other element sources. They reside as free-living forms in the rocky and sedimentary mixing interfaces between hot, highly reductive hydrothermal fluids (high temperatures of endmember hydrothermal fluids) and ambient seawaters beneath and at the seafloor (along subseafloor hydrothermal fluid paths, and in and on chimneys and sediments) and within lower temperatures of diffuse fluids mainly resulting from subseafloor mixing between endmember hydrothermal fluids and ambient seawaters, and as facultative or obligate symbionts on and within invertebrate hosts (Takai et al. 2006a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bischoff JL, Rosenbauer RJ (1985) An empirical equation of state for hydrothermal seawater (3.2 percent NaCl). Am J Sci 285:725–763

    Article  CAS  Google Scholar 

  • Brazelton WJ, Schrenk MO, Kelley DS, Baross JA (2006) Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem. Appl Environ Microbiol 72:6257–6270

    Article  PubMed  CAS  Google Scholar 

  • Charlou JL, Fouquet Y, Donval JP, Auzende JM, Jean-Baptiste P, Stievenard M, Michel S (1996) Mineral and gas geochemistry of hydrothermal fluids on an ultrafast spreading ridge: East Pacific Rise, 17° to 19°S (Naudur cruise, 1993)-phase separation processes controlled by volcanic and tectonic activity. J Geophys Res 101:15899–15919

    Article  CAS  Google Scholar 

  • Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm N (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36j14VN, MAR). Chem Geol 191:345–359

    Article  CAS  Google Scholar 

  • Edwards KJ, Rogers DR, Wirsen CO, McCollom TM (2003) Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic alpha- and gamma-proteobacteria from the deep sea. Appl Environ Microbiol 69:2906–2913

    Article  PubMed  CAS  Google Scholar 

  • Emerson D, Rentz JA, Lilburn TG, Davis RE, Aldrich H, Chan C, Moyer CL (2007) A novel lineage of proteobacteria involved in formation of marine fe-oxidizing microbial mat communities. PLoS One 2:e667

    Article  PubMed  Google Scholar 

  • Escrig S, Bézos A, Goldstein SL, Langmuir CH, Michael PJ (2009) Mantle source variations beneath the Eastern Lau Spreading Center and the nature of subduction components in the Lau basin–Tonga arc system. Geochem Geophys Geosyst 10:Q04014. doi:10.1029/2008GC002281

    Article  Google Scholar 

  • Ferrini VL, Tivey MK, Carbotte SM, Martinez F, Roman C (2008) Variable morphologic expression of volcanic, tectonic, and hydrothermal processes at six hydrothermal vent fields in the Lau back-arc basin. Geochem Geophys Geosyst 9:Q07022. doi:10.1029/2008GC002047

    Article  Google Scholar 

  • Fryer P, Sujimoto H, Sekine M, Johnson LE, Kasahara J, Masuda H, Gamo T, Ishi T, Ariyoshi M, Fujioka K (1998) Volcanoes of the southwestern extension of the active Mariana island arc: new swath-mapping and geochemical studies. Island Arc A:596–607

    Article  Google Scholar 

  • Gallant RM, Von Damm KL (2006) Geochemical controls on hydrothermal fluids from the Kairei and Edmond Vent Fields, 23°–25°S, Central Indian Ridge. Geochem Geophys Geosyst 7:Q06018. doi:10.1029/2005GC001067

    Article  Google Scholar 

  • Gamo T, Okamura K, Charlou JL, Urabe T, Auzende JM, Ishibashi J, Shitashima K, Kodama Y, Shipboard scientific party of the ManusFlux Cruise (1997) Acidic and sulfate-rich hydrothermal fluid from the Manus basin, Papua New Guinea. Geology 25:139–142

    Google Scholar 

  • Gamo T, Masuda H, Yamanaka T et al (2004) Discovery of a hydrothermal venting site in the southernmost Mariana Arc: Al-rich hydrothermal plumes and white smoker activity associated with biogenic methane. Geochem J 38:527–534

    Article  CAS  Google Scholar 

  • Glasby GP, Notsu K (2003) Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: an overview. Ore Geol Rev 23:299–339

    Article  Google Scholar 

  • Hashimoto J, Ohta S, Gamo T, Chiba H, Yamaguchi T, Tsuchida S, Okudaira T, Watabe H, Yamanaka T, Kitazawa M (2001) First hydrothermal vent communities from the Indian Ocean discovered. Zool Sci 18:717–721

    Article  Google Scholar 

  • Huber JA, Holden JF (2008) Modeling the impact of diffuse vent microorganisms along ­Mid-Ocean ridges and flanks. In: Lowell RP, Seewald JS, Metaxas A, Perfit MR (eds) Magma to microbe: modeling hydrothermal processes at oceanic spreading centers, vol 178, Geophysical Monograph Series. American Geophysical Union, Washington, DC, pp 215–231

    Chapter  Google Scholar 

  • Inagaki F, Kuypers MM, Tsunogai U et al (2006) Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system. Proc Natl Acad Sci USA 103:14164–14169

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi J, Urabe T (1995) Hydrothermal activity related to Arc-Backarc magamtism in the Western Pacific. In: Taylor B (ed) Backarc Basins: tectonics and magmatism. Plenum Press, New York, pp 451–495

    Chapter  Google Scholar 

  • Ishibashi J, Lupton JE, Yamaguchi T, Querellou J, Nunoura T, Takai K (2006) Expedition reveals changes in Lau Basin hydrothermal system, Eos Trans. AGU 87:13–17

    Google Scholar 

  • Johnson JW, Oelkers EH, Helgeson HC (1992) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C. Comput Geosci 18:899–947

    Article  Google Scholar 

  • Jørgensen BB, Boetius A (2007) Feast and famine–microbial life in the deep-sea bed. Nat Rev Microbiol 5:770–781

    Article  PubMed  Google Scholar 

  • Konno U, Tsunogai U, Nakagawa F, Nakaseama N, Ishibashi J, Nunoura T, Nakamura K (2006) Liquid CO2 venting on the seafloor: Yonaguni Knoll IV hydrothermal system, Okinawa Trough. Geophys Res Lett 33:L16607. doi:10.1029/2006GL026115

    Article  Google Scholar 

  • Kumagai H, Nakamura K, Toki T et al (2008) Geological background of the Kairei and Edmond hydrothermal fields along the Central Indian Ridge: implications of their vent fluids’ distinct chemistry. Geofluids 8:239–251

    Article  CAS  Google Scholar 

  • Lee HS, Kang SG, Bae SS et al (2008) The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism. J Bacteriol 190:7491–7499

    Article  PubMed  CAS  Google Scholar 

  • Letouzey J, Kimura M (1986) Okinawa Trough: genesis of a back-arc basin developing along a continental margin. Tectonophysics 125:209–230

    Article  Google Scholar 

  • Lupton J, Lilley M, Butterfield D, Evans L, Embley R, Massoth G, Christenson B, Nakamura K, Schmidt M (2008) Venting of a separate CO2-rich gas phase from submarine arc volcanoes: examples from the Mariana and Tonga-Kermadec arcs. J Geophys Res 113:B08S12. doi:10.1029/2007JB005467

    Article  Google Scholar 

  • McCliment EA, Voglesonger KM, O’Day PA, Dunn EE, Holloway JR, Cary SC (2006) Colonization of nascent, deep-sea hydrothermal vents by a novel archaeal and nanoarchaeal assemblage. Environ Microbiol 8:114–125

    Article  PubMed  CAS  Google Scholar 

  • McCollom TM (2007) Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems. Astrobiology 7:933–950

    Article  PubMed  CAS  Google Scholar 

  • McCollom TM, Shock EL (1997) Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim Cosmochim Acta 61:4375–4391

    Article  PubMed  CAS  Google Scholar 

  • Melchert B, Devey CW, German CR, Lackschewitz KS, Seifert R, Walter M, Mertens C, Yoerger DR, Baker ET, Paulick H, Nakamura K (2008) First evidence for high-temperature off-axis venting of deep crustal/mantle heat: the Nibelungen hydrothermal field, southern Mid-Atlantic Ridge. Earth Planet Sci Lett 275:61–69

    Article  CAS  Google Scholar 

  • Moussard H, L’Haridon S, Tindall BJ, Banta A, Schumann P, Stackebrandt E, Reysenbach AL, Jeanthon C (2004) Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 54:227–233

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S, Takai K (2006) The isolation of thermophiles from deep-sea hydrothermal environments. In: Rainey FA, Oren A (eds) Extremophiles. Methods in microbiology (vol 35). Elsevier, London, pp 57–91

    Google Scholar 

  • Nakagawa S, Takai K (2008) Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol Ecol 65:1–14

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S, Takai K, Inagaki F, Chiba H, Ishibashi J, Kataoka S, Hirayama H, Nunoura T, Horikoshi K, Sako Y (2005) Variability in microbial community and venting chemistry in a sediment-hosted backarc hydrothermal system: impacts of subseafloor phase-separation. FEMS Microbiol Ecol 54:141–155

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Takai K, Suzuki Y, Hirayama H, Konno U, Tsunogai U, Horikoshi K (2006) Geomicrobiological exploration and characterization of a novel deep-sea hydrothermal system at the TOTO caldera in the Mariana Volcanic Arc. Environ Microbiol 8:37–49

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Morishita T, Bach W, Klein F, Hara K, Okino K, Takai K, Kumagai H (2009) Serpentinized troctolites exposed near the Kairei hydrothermal field, Central Indian Ridge: insights into the origin of the Kairei hydrothermal fluid supporting a unique microbial ecosystem. Earth Planet Sci Lett 280:128–136

    Article  CAS  Google Scholar 

  • Nunoura T, Takai K (2009) Comparison of microbial communities associated with phase-separation-induced hydrothermal fluids at the Yonaguni Knoll IV hydrothermal field, the Southern Okinawa Trough. FEMS Microbiol Ecol 67:351–370

    Article  PubMed  CAS  Google Scholar 

  • Pagé A, Tivey MK, Stakes DS, Reysenbach AL (2008) Temporal and spatial archaeal colonization of hydrothermal vent deposits. Environ Microbiol 10:874–884

    Article  PubMed  Google Scholar 

  • Perner M, Kuever J, Seifert R, Pape T, Koschinsky A, Schmidt K, Strauss H, Imhoff JF (2007a) The influence of ultramafic rocks on microbial communities at the Logatchev hydrothermal field, located 15 degrees N on the Mid-Atlantic Ridge. FEMS Microbiol Ecol 61:97–109

    Article  PubMed  CAS  Google Scholar 

  • Perner M, Seifert R, Weber S, Koschinsky A, Schmidt K, Strauss H, Peters M, Haase K, Imhoff JF (2007b) Microbial CO2 fixation and sulfur cycling associated with low-temperature ­emissions at the Lilliput hydrothermal field, southern Mid-Atlantic Ridge (9 degrees S). Environ Microbiol 9:1186–1201

    Article  PubMed  CAS  Google Scholar 

  • Resing JA, Lebon G, Baker ET, Lupton JE, Embley RW, Massoth GJ, Chadwick WW, de Ronde CEJ (2007) Venting of acid-sulfate fluids in a high-sulfidation setting at NW rota-1 submarine volcano on the Mariana Arc. Econ Geol 102:1047–1061

    Article  CAS  Google Scholar 

  • Reysenbach AL, Banta AB, Boone DR, Cary SC, Luther GW (2000) Microbial essentials at hydrothermal vents. Nature 404:835–845

    Article  PubMed  CAS  Google Scholar 

  • Sakai H, Gamo T, Kim ES et al (1990) Unique chemistry of the hydrothermal solution in the mid-Okinawa Trough backarc basin. Geophys Res Lett 17:2133–2136

    Article  CAS  Google Scholar 

  • Schouten S, Wakeham SG, Hopmans EC, Sinninghe Damsté JS (2003) Biogeochemical evidence that thermophilic archaea mediate the anaerobic oxidation of methane. Appl Environ Microbiol 69:1680–1686

    Article  PubMed  CAS  Google Scholar 

  • Shock EL, Helgeson HC (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C. Geochim Cosmochim Acta 52:2009–2036

    Article  CAS  Google Scholar 

  • Shock EL, Helgeson HC (1990) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: standard partial molal properties of organic species. Geochim Cosmochim Acta 54:915–945

    Article  CAS  Google Scholar 

  • Shock EL, Holland ME (2004) Geochemical energy sources that support the subsurface biosphere. In: Wilcock WSD, Delong EF, Kelley DS, Baross JA, Cary SC (eds) The subseafloor biosphere at Mid-Ocean Ridges, vol 144, Geophysical Monograph Series. AGU, Washington, DC, pp 153–165

    Chapter  Google Scholar 

  • Shock EL, Sassani DC, Willis M, Sverjensky DA (1997) Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim Cosmochim Acta 61:907–950

    Article  PubMed  CAS  Google Scholar 

  • Sokolova TG, Jeanthon C, Kostrikina NA, Chernyh NA, Lebedinsky AV, Stackebrandt E, Bonch-Osmolovskaya EA (2004) The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Extremophiles 8:317–323

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Inagaki F, Takai K, Nealson KH, Horikoshi K (2004) Microbial diversity in inactive chimney structures from deep-sea hydrothermal systems. Microb Ecol 47:186–196

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Gamo T, Tsunogai U, Nakayama N, Hirayama H, Nealson KH, Horikoshi K (2004a) Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles 8:269–282

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Oida H, Suzuki Y, Hirayama H, Nakagawa S, Nunoura T, Inagaki F, Nealson KH, Horikoshi K (2004b) Spatial distribution of Marine Crenarchaeota Group I in the vicinity of deep-sea hydrothermal systems. Appl Environ Microbiol 70:2404–2413

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Nakagawa S, Reysenbach AL, Hoek J (2006a) Microbial ecology of Mid-Ocean Ridges and Back-Arc Basins. In: Christie DM, Fisher CR, Lee SM, Givens S (eds) Back-Arc spreading systems: geological, biological, chemical and physical interactions, vol 166, Geophysical Monograph Series. AGU, Washington, DC, pp 185–213

    Chapter  Google Scholar 

  • Takai K, Nakamura K, Suzuki K, Inagaki F, Nealson KH, Kumagai H (2006b) Ultramafics-Hydrothermalism-Hydrogenesis-HyperSLiME (UltraH3) linkage: a key insight into early microbial ecosystem in the Archean deep-sea hydrothermal systems. Paleontol Res 10:269–282

    Article  Google Scholar 

  • Takai K, Nunoura T, Ishibashi J et al (2008a) Variability in the microbial communities and hydrothermal fluid chemistry at the newly-discovered Mariner hydrothermal field, southern Lau Basin. J Geophys Res 113:G02031. doi:10.1029/2007JG000636

    Article  Google Scholar 

  • Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008b) Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA 105:10949–10954

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Nunoura T, Suzuki Y et al (2009) Variability in microbial communities in black smoker chimneys at the NW caldera vent field, Brothers volcano, Kermadec arc. Geomicrobiol J. 26:552–569

    Google Scholar 

  • Van Dover CL, Humphris SE, Fornari D et al (2001) Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294:818–823

    Article  PubMed  Google Scholar 

  • Wolery TW, Jarek RL (2003) Software user’s manual. EQ3/6, Version 8.0. U.S. Dept. of Energy Report, 10813-UM-8.0-00. Sandia National Laboratories, Albuquerque, New Mexico, p 376

    Google Scholar 

  • Wolery TJ, Jove-Colon CF (2004) Qualification of thermodynamic data for geochemical modeling of mineral–water interactions in dilute systems. U.S. Dept. of Energy Report, ANL-WIS-GS-000003 REV00. Bechtel SAIC Company, LLC, Las Vegas, Nevada, p 212

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Takai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Takai, K., Nakamura, K. (2010). Compositional, Physiological and Metabolic Variability in Microbial Communities Associated with Geochemically Diverse, Deep-Sea Hydrothermal Vent Fluids. In: Barton, L., Mandl, M., Loy, A. (eds) Geomicrobiology: Molecular and Environmental Perspective. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9204-5_12

Download citation

Publish with us

Policies and ethics