Chemoautotrophic Origin of Life: The Iron–Sulfur World Hypothesis

  • Günter Wächtershäuser


The study of the origin of life is an immature science. If we apply the strictures of Immanuel Kant it may not be considered a mature science until it can be said to have embarked on a course of orderly progress. Indeed, if we review the development of research into the origin of life, we have to admit that it is still far from presenting the image of progress. It may be best characterized as an exercise of randomly groping around – and doing so at a number of different levels.


Glycol Aldehyde Domain Bacterium Rolling Circle Replication Genetic Machinery Volcanic Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Barrault J, Boulinguiez M, Forquy C, Maurel R (1987) Synthesis of methyl mercaptan from carbon oxides and H2S with tungsten-alumina catalysts. Appl Catal 33:309–330CrossRefGoogle Scholar
  2. Bernal JD (1951) The physical basis of life. Routledge/Kegan Paul, LondonGoogle Scholar
  3. Berrisford DJ, Bolm C, Sharpless KB (1995) Ligand accelerated catalysis. Angew Chem Int Ed 34:1059–1070CrossRefGoogle Scholar
  4. Blackmond DG (2009) An examination of the role of autocatalytic cycles in the chemistry of proposed primordial reactions. Angew Chem Int Ed 48:386–390CrossRefGoogle Scholar
  5. Cairns-Smith AG (1982) Genetic takeover. Cambridge University Press, LondonGoogle Scholar
  6. Cockell CS (2006) The origin and emergence of life under impact bombardment. Phil Trans R Soc B 361:1845–1875PubMedCrossRefGoogle Scholar
  7. Cody GD, Boctor NZ, Filley TR, Hazen RM, Scott JH, Sharma A, Yoder HS Jr (2000) Primordial carbonylated iron–sulfur compounds and the synthesis of pyruvate. Science 289:1337–1340PubMedCrossRefGoogle Scholar
  8. Corazza E (1986) Field workshop on volcanic gases, Volcano (Italy), 1982, General Report. Geothermics 15:197–200CrossRefGoogle Scholar
  9. Corliss JB, Baross JA, Hoffman SE (1981) An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. Oceanol Acta SP:59–69Google Scholar
  10. Di Giulio M (2003) The universal ancestor and the ancestor of bacteria were hyperthermophiles. J Mol Evol 57:721–730PubMedCrossRefGoogle Scholar
  11. Dörr M, Käßbohrer J, Grunert R, Kreisel G, Brand WA, Werner RA, Geilmann H, Apfel C, Robl C, Weigand W (2003) A possible prebiotic formation of ammonia from dinitrogen on iron-sulfide surfaces. Angew Chem Int Ed 42:1540–1543CrossRefGoogle Scholar
  12. Drobner E, Huber H, Wächtershäuser G, Rose D, Stetter KO (1990) Pyrite formation linked with hydrogen evolution under anaerobic conditions. Nature 346:742–744CrossRefGoogle Scholar
  13. Filtness MJ, Butler IB, Rickard D (2003) The origin of life: the properties of iron sulphide membranes. Trans Inst Min Metall Sect B 112:171–172Google Scholar
  14. Fukuda F, Dokiya M, Kameyama T, Kotera Y (1977) Catalytic activity of metal sulfides for the reaction, H2S + CO = H2 + COS. J Catal 49:379–382CrossRefGoogle Scholar
  15. Gräwert T, Kaiser J, Zepeck F et al (2004) IspH Protein of Escherichia coli: Studies on iron-sulfur cluster implementation and catalysis. J Am Chem Soc 126:12847–12855PubMedCrossRefGoogle Scholar
  16. Heinen W, Lauwers AM (1996) Organic sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment. Orig Life Evol Biosph 26:131–150PubMedCrossRefGoogle Scholar
  17. Huber C, Eisenreich W, Hecht S, Wächtershäuser G (2003) A possible primordial peptide cycle. Science 301:938–940PubMedCrossRefGoogle Scholar
  18. Huber C, Wächtershäuser G (1997) Activated acetic acid by carbon fixation on (Fe, Ni)S unnder primordial conditions. Science 276:245–247PubMedCrossRefGoogle Scholar
  19. Huber C, Wächtershäuser G (1998) Peptides by activation of amino acids on (Fe, Ni)S surfaces: Implications for the origin of life. Science 281:670–672PubMedCrossRefGoogle Scholar
  20. Huber C, Wächtershäuser G (2006) α-Hydroxy and α-amino acids under possible hadean, volcanic origin-of-life conditions. Science 324:630–632CrossRefGoogle Scholar
  21. Holloway JR, Blank JG (1994) Application of experimental results to C–O–H species in natural melts. Rev Mineralog 30:187–230Google Scholar
  22. Jacobsen SB (2003) How old is planet Earth? Science 300:1513–1514PubMedCrossRefGoogle Scholar
  23. Jékely G (2008) Origin of the nucleus and Ran-dependent transport to safeguard ribosome biogenesis in a chimeric cell. Biol Direct 3:31–45PubMedCrossRefGoogle Scholar
  24. Kandler O (1994a) Cell wall biochemistry in Archaea and its phylogenetic implications. J Biol Phys 20:165–169CrossRefGoogle Scholar
  25. Kandler O (1994) The early diversification of life. In: Bengtson S (ed) Early life on earth: Nobel Symposium No. 84. Columbia University Press, New York, p 152Google Scholar
  26. Kandler O (1998) The early diversification of life and the origin of the three domains: a proposal. In: Wiegel J, Adams MWW (eds) Thermophiles: the keys to molecular evolution and the origin of life. Taylor & Francis, London, pp 19–28Google Scholar
  27. Kant I (1790) Krtik der Urteilskraft, Translation by Meredith JC. 1952. The critique of judgment. Clarendon, Oxford, pp 81, 82Google Scholar
  28. Kelley DS, Karon JA, Blackman DA et al (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N. Nature 412:145–149PubMedCrossRefGoogle Scholar
  29. King GAM (1977) Symbiosis and the origin of life. Orig Life 8:39–53PubMedCrossRefGoogle Scholar
  30. Kleine T, Münker C, Mezger K, Palme H (2002) Rapid accretion and early core formation on asteroids and on terrestrial planets from Hf-W chronometry. Nature 418:952–955PubMedCrossRefGoogle Scholar
  31. Kuhn H (1972) Selbstorganisation molekularer systeme und die evolution des genetischen apparats. Angew Chem 84:838–862CrossRefGoogle Scholar
  32. Kuma K, Paplawsky W, Gedulin B, Arrhenius G (1989) Mixed-valence hydroxides as bioorganic host minerals. Orig Life Evol Biosph 19:573–582PubMedCrossRefGoogle Scholar
  33. Kuwabara T, Minaba M, Ogi N, Kammekura M (2005) Thermococcus coalescens sp. nov., a cell- fusing hyperthermophilic archaeon from Suiyo Seamount. Int J Syst Evol Microbiol 55:2507–2514PubMedCrossRefGoogle Scholar
  34. Lang BF, Burger G, O’Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387:493–497PubMedCrossRefGoogle Scholar
  35. Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591:1220–1247CrossRefGoogle Scholar
  36. Martin W, Koonin EV (2006) Introns and the origin of nucleus-cytosol compartmentalization. Nature 440:41–45PubMedCrossRefGoogle Scholar
  37. Martin W, Russell MJ (2003) On the origin of cells: an hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Phil Trans R Soc B 358:27–85CrossRefGoogle Scholar
  38. Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4.300 Myr ago. Nature 409:178–181PubMedCrossRefGoogle Scholar
  39. Mukhin L (1974) Evolution of organic compounds in volcanic regions. Nature 251:50–51CrossRefGoogle Scholar
  40. Nägeli C (1884) Mechanisch-physiologische Theorie der Abstammungslehre. Oldenbourg, München, pp 83–101Google Scholar
  41. Orgel LE (1968) Evolution of the genetic apparatus. J Mol Evol 38:381–393Google Scholar
  42. Oparin AI (1924) Proiskhozhdenie zhizny. Moscow. Izd. Mosk. Rabochii. English translation by Synge A (1967). In: Bernal JD (ed) The origin of life. Weidenfeld & Nicolson, London, pp 199–234Google Scholar
  43. Owen AJ (1961) Calcium cyanamide synthesis. Part 1. – Thermodynamic studies. Trans Faraday Soc 57:670–677CrossRefGoogle Scholar
  44. Peck WH, Valley JW, Wilde SA, Graham CM (2001) Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ18O continental crust and oceans in the early archaean. Geochim Cosmochim Acta 65:4215–4229CrossRefGoogle Scholar
  45. Russell MJ, Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc 154:377–402CrossRefGoogle Scholar
  46. Russell MJ (2007) The alkaline solution to the emergence of life: energy, entropy and early evolution. Acta Biotheor 55:133–179PubMedCrossRefGoogle Scholar
  47. Siefert JL, Martin KA, Abdi F, Widger WR, Fox GE (1977) Conserved gene clusters in bacterial genomes provide further support for the primacy of RNA. J Mol Evol 45:467–472CrossRefGoogle Scholar
  48. Taylor P, Rummery TE, Owen DG (1979) Reactions of iron mono-sulfide solids with aqueous hydrogen sulfide up to 160°C. J Inorg Nucl Chem 41:1683–1687CrossRefGoogle Scholar
  49. Wächtershäuser G (1988a) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484PubMedGoogle Scholar
  50. Wächtershäuser G (1988b) German Patent Application P 38 12 158.1, filed April 4, 1988 and published November 3, 1988. p 9Google Scholar
  51. Wächtershäuser G (1988c) Pyrite formation, the first energy source for life: a hypothesis. Syst Appl Microbiol 10:207–210CrossRefGoogle Scholar
  52. Wächtershäuser G (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci USA 87:200–204PubMedCrossRefGoogle Scholar
  53. Wächtershäuser G (1992) Groundworks for an evolutionary biochemistry: the iron–sulphur world. Prog Biophys Mol Biol 58:85–201PubMedCrossRefGoogle Scholar
  54. Wächtershäuser G (1997) The origin of life and its methodological challenge. J Theor Biol 187:483–494PubMedCrossRefGoogle Scholar
  55. Wächtershäuser G (1998a) The case for a hyperthermophilic, chemolithoautotrophic origin of life in an iron–sulfur world. In: Wiegel J, Adams MWW (eds) Thermophiles: the keys to molecular evolution and the origin of life. Taylor & Francis, London, pp 47–57Google Scholar
  56. Wächtershäuser G (1998b) Towards a reconstruction of ancestral genomes by gene cluster alignment. Syst Appl Microbiol 21:473–477CrossRefGoogle Scholar
  57. Wächtershäuser G (2001) RNA world vs. autocatalytic anabolism. In: Dworkin M (ed) The prokaryotes, an evolving electronic resource for the microbial community. Springer, New YorkGoogle Scholar
  58. Wächtershäuser G (2003) From pre-cells to Eukarya – a tale of two lipids. Mol Microbiol 47:13–22PubMedCrossRefGoogle Scholar
  59. Wächtershäuser G (2006) From volcanic origins of chemoautotrophic life to bacteria, archaea and eukarya. Phil Trans R Soc B London 361:1787–1808CrossRefGoogle Scholar
  60. Wächtershäuser G (2007) On the chemistry and evolution of the pioneer organism. Chem Biodivers 4:584–602PubMedCrossRefGoogle Scholar
  61. Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178PubMedCrossRefGoogle Scholar
  62. Woese CR (1967) The genetic code: the molecular basis for genetic expression. Harper and Row, New YorkGoogle Scholar
  63. Woese CR, Fox GE (1977) The concept of cellular evolution. J Mol Evol 10:1–6PubMedCrossRefGoogle Scholar
  64. Woese CR (1982) Archaebacteria and cellular origins: an overview. Zbl Bakt Hyg, I Abt Orig C3:1–17Google Scholar
  65. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedGoogle Scholar
  66. Woese CR (1998) The universal ancestor. Proc Natl Acad Sci USA 95:6854–6859PubMedCrossRefGoogle Scholar
  67. Ycas M (1955) A note on the origin of life. Proc Natl Acad Sci USA 41:714–716PubMedCrossRefGoogle Scholar
  68. Yin Q, Jacobsen SB, Yamashita K, Blichert-Toft J, Télouk P, Albarède F (2002) A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature 418:949–952PubMedCrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  1. 1.MunichGermany

Personalised recommendations