Solution-Precipitation Creep – Modeling and Extended FE Implementation

Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 21)

Abstract

The topic of this contribution is the mechanical modeling of solutionprecipitation creep, a process occurring in polycrystalline and granular structures under specific temperature and pressure conditions. The model presented has a variational structure and is based on a novel proposal for the dissipation while the elastic energy is kept in the standard form. The assumed dissipation term depends on two kinds of velocities characteristic for the process: velocity of material transfer and velocity of inelastic deformations, both manifesting themselves on the boundaries of the grains. For the numerical implementation, the standard finite element program FEAP together with the pre- and postprocessing software package GID are used. The simulations are illustrated by two examples, a polycrystal with regular hexagonal microstructure and a polycrystal with random microstructure.

Keywords

Inelastic Deformation Dissipation Term Displacement Constraint Polycrystalline Microstructure Random Microstructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carstensen, C., Hackl, K. and Mielke, A., Nonconvex potentials and microstructures in finite-strain plasticity, Proc. Royal Soc. Lond. Ser. A 458, 2002, 299–317.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Coble, R.L., A model for boundary diffusion controlled creep in polycrystalline materials, J. Appl. Phys.34, 1963, 1679–1682.CrossRefGoogle Scholar
  3. 3.
    Cooper, R.F., Kohlstedt, D.L. and Chyung, K., Solution-precipitation enhanced creep in solid liquid aggregates which display a non-zero dihedral angle, Acta Metallurgica 37, 1989, 1759–771.CrossRefGoogle Scholar
  4. 4.
    Elliott, D., Deformation paths in structural geology, Geol. Soc. America. Bull.83, 1972, 2621–2638.CrossRefGoogle Scholar
  5. 5.
    Elliott, D., Diffusion flow laws in metamorphic rocks, Geol. Soc. America. Bull.84, 1973, 2645–2664.CrossRefGoogle Scholar
  6. 6.
    Ford, J.M., Wheeler, J. and Movchan, A.B., Computer simulation of grain boundary creep, Acta Materialia 50, 2002, 3941–3955.CrossRefGoogle Scholar
  7. 7.
    Ford, J.M., Ford, N.J. and Wheeler, J., Simulation of grain boundary diffusion creep: Analysis of some new numerical techniques, Proc. Royal Soc. Lond. Ser. A 460, 2004, 2395–2413.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hackl, K. and Fischer, F.D., On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials, Proc. Royal Soc. Ser. A 464, 2007, 117–132.CrossRefMathSciNetGoogle Scholar
  9. 9.
    Hackl, K. and Ilic, S., Solution-precipitation creep – Continuum mechanical formulation and micromechanical modelling, Arch. Appl. Mech.74, 2005, 773–779.MATHCrossRefGoogle Scholar
  10. 10.
    Hackl, K., Mielke, A. and Mittenhuber, D., Dissipation distances in multiplicative elastoplasticity, in Analysis and Simulation of Multifield Problems, W. Wendland and M. Efendiev (Eds.), Springer-Verlag, 2003, pp. 87–100.Google Scholar
  11. 11.
    Herring, C., Diffusional viscosity of a polycrystalline solid, J. Appl. Phys.21, 1950, 245–278.Google Scholar
  12. 12.
    Hughes, T.J.R., The Finite Element Method, Prentice Hall, Englewood Cliffs, NJ, 1987.MATHGoogle Scholar
  13. 13.
    Ilic, S. and Hackl, K., Solution-precipitation creep – Micromechanical modelling and numerical results, PAMM 5, 2005, 277–278.CrossRefGoogle Scholar
  14. 14.
    Ilic, S., Application of the multiscale FEM to the modeling of composite materials, PhD Thesis, Ruhr University Bochum, 2008.Google Scholar
  15. 15.
    Mielke, A., Energetic formulation of multiplicative elasto-plasticity using dissipation distances, Cont. Mech.15, 2003, 351–382.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Mielke, A., Evolution of rate-independent inelasticity with microstructure using relaxation and Young measures, in IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains, C. Miehe (Ed.), Kluwer, 2003, pp. 33–44.Google Scholar
  17. 17.
    Nabarro, F.R.N., Deformation of crystals by the motion of single ions, in Report of a Conference on the Strength of Solids: Phys. Soc. Proc., 1948, pp. 75–90.Google Scholar
  18. 18.
    Ortiz, M. and Steinier, L., The variational formulation of viscoplastic constitutive updates. Comput. Meth. Appl. Mech. Engrg.171, 1999, 419–444.MATHCrossRefGoogle Scholar
  19. 19.
    Paterson, M.S., A theory for granular flow accommodated by material transfer via an intergranular fluid, Tectonphysics 245, 1995, 131–151.CrossRefGoogle Scholar
  20. 20.
    Renner, J., Evans, B. and Hirth, G., On the rheologically critical melt fraction, Earth Plan. Sci. Lett.181, 2000, 585–594.CrossRefGoogle Scholar
  21. 21.
    Rösler, J., Harders, H. and Bäker, M., Mechanisches Verhalten der Werksoffe, Teubner, 2006.Google Scholar
  22. 22.
    Simo, J.C., and Hughes, T.J.R., Computational Inelasticity, Springer Verlag, 1997.Google Scholar
  23. 23.
    Sorby, H.C., Über Kalkstein-Geschiebe mit Eindrücken, Neues Jahrb. Mineralogie, 1863, 801–807.Google Scholar
  24. 24.
    Sorby, H.C., On the application of quantitative methods to the study of rocks, Geol. Soc. London Quart. J.61, 1908, 171–233.CrossRefGoogle Scholar
  25. 25.
    Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, Butterworth-Heinemann, 2000.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institute of MechanicsRuhr University BochumBochumGermany

Personalised recommendations