Variational Concepts with Applications to Microstructural Evolution

  • F. D. Fischer
  • J. Svoboda
  • K. Hackl
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 21)


In systems at elevated temperature the development of the microstructure of a material is controlled by diffusional and interface migration processes. As first step the description of the microstructure is reduced to a finite number of time-dependent characteristic parameters (CPs). Then the Thermodynamic Extremal Principle (TEP) is engaged to develop the evolution equations for these characteristic parameters. This treatment is demonstrated on a bamboo-structured material system predicting the spatial and time distribution of chemical composition as well as the deformation state.


Acta Mater Entropy Production Site Fraction Partial Molar Volume Solute Drag 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersson, J.O. and Agren, J.: Models for numerical treatment of multicomponent diffusion in simple phases, J. Appl. Phys. 72, 1992, 1350–1355.CrossRefGoogle Scholar
  2. 2.
    Belova, I.V. and Murch, G.E.: Analysis of interdiffusion data in multicomponent alloys to extract fundamental diffusion information, J. Phase Equil. Diff. 27, 2006, 629–637.Google Scholar
  3. 3.
    Chen, Q., Jeppsson, J. and Agren, J.: Analytical treatment of diffusion during precipitate growth in multicomponent systems, Acta Mater. 56, 2008, 1890–1896.CrossRefGoogle Scholar
  4. 4.
    Cocks, A.C.F., Gill, S.P.A. and Pan, J.-Z.: Modeling microstructure evolution in engineering materials, in E. van der Giessen and Th. Y. Wu (Eds.), Advances in Applied Mechanics, Vol. 36, Academic Press, San Diego, 1999, pp. 81–162.Google Scholar
  5. 5.
    Cornet, J.-F. and Calais, D.: Etude de l’effet Kirkendall d’apres les equations de Darken. J. Phys. Chem. Solids 33, 1972, 1675–1684.CrossRefGoogle Scholar
  6. 6.
    Danielewski, M., Wierzba, B., Bachorczyk-Nagy, R. and Pietrzyk M.: Three-dimensional interdiffusion under stress field in Fe-Ni-Cu alloys, J. Phase Equilibria Diff. 27, 2006, 691–698.Google Scholar
  7. 7.
    Darken, L.S.: Diffusion, mobility and their interrelation through free energy in binary metallic systems, Trans. Amer. Inst. Min. Metall. Engrg. 175, 1948, 184–201.Google Scholar
  8. 8.
    Fratzl, P., Fischer, F.D. and Svoboda, J.: Energy dissipation and stability of propagating interfaces. Phys. Rev. Lett. 95, 2005, 195702-1–195702-4.CrossRefGoogle Scholar
  9. 9.
    Gamsjäger, E., Svoboda, J., Fischer, F.D. and Rettenmayr, M.: Kinetics of solute driven melting and solidification, Acta Mater. 55, 2007, 2599–2607.CrossRefGoogle Scholar
  10. 10.
    Gamsjäger, E., Svoboda, J. and Fischer, F.D.: Solute drag or diffusion processes in a migrating thick interface, Philos. Mag. Lett. 88, 2008, 415–420.CrossRefGoogle Scholar
  11. 11.
    Hackl, K. and Fischer, F.D.: On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials, Proc. Royal Soc. A 464, 2008, 117–132.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Helander, T. and Agren, J.: Diffusion in the B2-B.C.C. Phase of the Al-Fe-Ni system – Application of a phenomenological model, Acta Mater. 47, 1999, 3291–3300.CrossRefGoogle Scholar
  13. 13.
    Hillert, M.: Phase Equilibria, Phase Diagrams and Phase Transformations, 2nd edn., Cambridge University Press, Cambridge, 2008.Google Scholar
  14. 14.
    Kattner, U.R. and Campbell, C.E.: Modelling of thermodynamics and diffusion in multicomponent systems, Mat. Sci. Technol. 25, 2009, 443–459.CrossRefGoogle Scholar
  15. 15.
    Manning, J.R.: Diffusion Kinetics for Atoms in Crystals, Van Nostrand, Princeton, NJ, 1968.Google Scholar
  16. 16.
    Moleko, L.K. and Allnatt, A.R.: Exact linear relations between the phenomenological coefficients for matter transport in a random alloy, Philos. Mag. A 58, 1988, 677–681.CrossRefGoogle Scholar
  17. 17.
    Moroz, A.: A variational framework for nonlinear chemical thermodynamics employing the maximum energy dissipation principle. J. Phys. Chem. B 113, 2009, 8086–8090.CrossRefGoogle Scholar
  18. 18.
    Nakajima, H.: The discovery and acceptance of the Kirkendall effect: The result of a short research career. JOM 49, 1997, 15–19.CrossRefGoogle Scholar
  19. 19.
    Onsager, L.: Reciprocal relations in irreversible processes I. Phys. Rev. 37, 1931, 405–426.zbMATHCrossRefGoogle Scholar
  20. 20.
    Onsager, L.: Theories and problems of liquid diffusion. Ann. N.Y. Acad. Sci. 46, 1945, 241–265.CrossRefGoogle Scholar
  21. 21.
    Sonderegger, B., Kozeschnik, E., Leitner, H., Clemens, H., Svoboda, J. and Fischer, FD.: Computational analysis of the precipitation kinetics in a complex tool steel. Int. J. Mat. Res. 99, 2008, 410–415.Google Scholar
  22. 22.
    Svoboda, J. and Riedel, H.: Quasi-equilibrium sintering for coupled grain-boundary and surface diffusion, Acta Mater. 43, 1995, 499–506.CrossRefGoogle Scholar
  23. 23.
    Svoboda, J., Fischer, F.D., Fratzl, P. and Kozeschnik, E.: Modelling of kinetics in multicomponent multi-phase systems with spherical precipitates I. – Theory, Mat. Sci. Engrg. A 385, 2004, 166–174.Google Scholar
  24. 24.
    Svoboda, J., Fischer, F.D. and Fratzl, P.: Diffusion and creep in multi-component alloys with non-ideal sources and sinks for vacancies, Acta Mater. 54, 2006, 3043–3053.CrossRefGoogle Scholar
  25. 25.
    Svoboda, J., Vala, J., Gamsjäger, E. and Fischer, F.D.: A thick-interface model for diffusive and massive phase transformation in substitutional alloys, Acta Mater. 54, 2006, 3953–3960.CrossRefGoogle Scholar
  26. 26.
    Svoboda, J. and Fischer, F.D.: A new approach to modelling of non-steady grain growth, Acta Mater. 55, 2007, 4467–4474.CrossRefGoogle Scholar
  27. 27.
    Svoboda, J., Fischer, F.D. and Mayrhofer, P.H.: A model for evolution of shape changing precipitates in multicomponent systems, Acta Mater. 56, 2008, 4896–4904.CrossRefGoogle Scholar
  28. 28.
    Svoboda, J., Fischer, F.D. and Gamsjäger, E.: Simulation of chemically driven inelastic strain in multi-component systems with non-ideal sources and sinks for vacancies, Acta Mater. 56, 2008, 351–357.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institute of Mechanics, Montanuniversität LeobenLeobenAustria
  2. 2.Institute of Physics of Materials, Academy of Sciences of the Czech RepublicBrnoCzech Republic
  3. 3.Lehrstuhl für Allgemeine Mechanik, Ruhr-Universität, BochumBochumGermany

Personalised recommendations