Skip to main content

Plankton Ecology and Diversity

  • Chapter
  • First Online:
Book cover Ecology of Threatened Semi-Arid Wetlands

Part of the book series: Wetlands: Ecology, Conservation and Management ((WECM,volume 2))

Abstract

In this chapter we describe plankton responses induced by fluctuating hydrology and eutrophication process in the semi-arid TDNP wetland. We have followed the planktonic community since 1992, at seasonal and interannual scales, covering as well the spatial heterogeneity of the wetland. The studied planktonic components were bacterioplankton, autotrophic picoplankton, nano and microphytoplankton and zooplankton, including ciliates. Plankton has been studied in terms of species composition (diversity), functional groups, spatial heterogeneity, population dynamics. The present data from this wetland allow us to determine which factors (resources and conditions) are relevant for each group and how their specific responses affect the food web. Bacterioplankton biovolume ranged between 0.1 and 5.0 mm3 l−1, autotrophic picoplankton (0–1.7 mm3 l−1), nano- and microphytoplankton (0.03–774 mm3 l−1, more than 90% nanoplankton), zooplankton (0.01–280 mm3 l−1, more than 50% ciliates). Plankton community shows an evident spatial heterogeneity, with the seasonal and inter annual dynamic of all groups differing between wetland areas. Shallowness and hydrologic conditions impinge strongly on the seasonal dynamics of plankton communities; patterns during drought and wet periods were different. Therefore, a lack of pattern among plankton assemblages is the most remarkable feature. We suggest that alternative states of plankton taxonomic structure in this eutrophic semiarid wetland occur as a sequence of substitutions, due to close coupling with sediment and hydrological disturbance. The autogenic trajectory is not attained and the trophic relationships or top-down control are possibly irrelevant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen TFH, Bartell SM, Koonce JF (1977) Multiple stable configurations in ordination of phytoplankton community changes rates. Ecology 58:1076–1082

    Article  Google Scholar 

  • Álvarez-Cobelas M, Cirujano S, Sánchez-Carrillo S (2001) Hydrological and botanical man-made changes in the Spanish wetland of Las Tablas de Daimiel. Conserv Biol 97:89–97

    Article  Google Scholar 

  • Álvarez-Cobelas M, Rojo C, Angeler D (2005) Mediterranean limnology: current status, gaps and the future. J Limnol 64:13–29

    Article  Google Scholar 

  • Álvarez-Cobelas M, Sánchez-Carrillo S, Cirujano S (2007) Strong site effects dictate nutrient patterns in a Mediterranean floodplain. Wetlands 27:326–336

    Article  Google Scholar 

  • Angeler DG, Rodrigo MA (2004) Ramp-disturbance-ramp response: a simple model for wetland disturbance ecology. Mar Freshw Res 55:33–37

    Article  Google Scholar 

  • Angeler DG, Álvarez-Cobelas M, Rojo C, Sánchez-Carrillo S (2000) The significance of water inputs to plankton biomass and the trophic relationships in a semi-arid freshwater wetland. J Plankton Res 22:2075–2093

    Article  Google Scholar 

  • Angeler DG, Álvarez-Cobelas M, Sánchez-Carrillo S, Rodrigo MA (2002) Assessment of exotic fish impacts on water quality and zooplankton in a degraded semi-arid floodplain wetland. Aquat Sci 64:76–86

    Article  CAS  Google Scholar 

  • Angeler DG, Sánchez-Carrillo S, Rodrigo MA, Viedma O, Álvarez-Cobelas M (2005) On the importance of water depth, macrophytes and fish in wetland picocyanobacteria regulation. Hydrobiologia 549:23–32

    Article  Google Scholar 

  • Baik K, Park S, Kim E, Bae K, Ann JH, Ka JO, Chun J, Seong C (2008) Diversity of bacterial community in freshwater of Woopo wetland. J Microbiol 46:647–655

    Article  PubMed  CAS  Google Scholar 

  • Basu BK, Kalff J, Pinel-Alloul B (2000) The influence of macrophyte beds on plakton communities and their export from fluvial lakes in the St Lawrence River. Freshw Biol 45:373–382

    Article  Google Scholar 

  • Beaver JR, Miller-Lemke AM, Acton JK (1999) Midsummer zooplankton assemblages in four types of wetlands in the Upper Midwest, USA. Hydrobiologia 380:209–220

    Article  Google Scholar 

  • Beckerman A, Petchey OL, Warren PH (2006) Foraging biology predicts food web complexity. Proc Natl Acad Sci USA 103:13745–13749

    Article  PubMed  CAS  Google Scholar 

  • Bell T, Kalff J (2001) The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnol Oceanogr 46:1243–1248

    Article  Google Scholar 

  • Bovo-Scomparin VM, Train S (2008) Long-term variability of the phytoplankton community in an isolated floodplain lake of the Ivinhema River State Park, Brazil. Hydrobiologia 610:331–344

    Article  Google Scholar 

  • Brieé C, Moreira D, López-García P (2007) Archaeal and bacterial community composition of sediment and plankton from a suboxic freshwater pond. Res Microbiol 158:213–227

    Article  PubMed  Google Scholar 

  • Chase JM (2007) Drought mediates the importance of stochastic community assembly. Proc Natl Acad Sci USA 104:17430–17434

    Article  PubMed  CAS  Google Scholar 

  • Claps MC, Gabellone NA, Benitez HH (2004) Zooplankton biomass in an eutrophic shallow lake (Buenos Aires, Argentina): spatio-temporal variations. Ann Limnol Int J Limnol 40:201–210

    Article  Google Scholar 

  • Conforti V, Lionard M, Rojo C (2005) Euglenophyes in Tablas de Daimiel Nacional Park as example of biotic indices limitations. Limnetica 62:163–179

    Google Scholar 

  • Currie DJ (1990) Large-scale variability and interactions among phytoplankton. Bacterioplakton and phosphorus. Limnol Oceanogr 35:1437–1455

    Article  Google Scholar 

  • D’Auria G, Barón-Rodríguez MM, Durbán-Vicente A, Moya A, Rojo C, Latorre A, Rodrigo MA (2010). Unravelling the bacterial diversity to be found in the semiarid Tablas de Daimiel National Park wetland. Aquat Microb Ecol 59:33–44

    Article  Google Scholar 

  • Del Giorgio PA, Peters RH (1993) The influence of DOC on bacteria-chlorphyll relationships in lakes. Verh Int Verein Limnol 25:359–362

    Google Scholar 

  • Gislason A, Petursdottir H, Astthorssonn OS, Gudmundsson K, Valdimarsson H (2009) Inter-annual variability in abundance and community structure of zooplankton south and north of Iceland in relation to environmental conditions in spring 1990–2007. J Plankton Res 31:541–551

    Article  CAS  Google Scholar 

  • Goldyn R, Szelag-Wasielewska E (2005) The effects of two shallow reservoirs on the phyto- and bacterioplankton of lowland river. Polish Journal of Environmental Studies 14:437–444

    Google Scholar 

  • Horn H, Horn W (2008) Bottom-up or top-down – How is the autotrophic picoplankton mainly controlled? Results of long-term investigations from two drinking water reservoirs of different trophic state. Limnologica 38:302–312

    Article  CAS  Google Scholar 

  • Jeppesen E, Erlandsen M, Sondegaard M (1997) Can simple empirical equations describe the seasonal dynamics of bacterioplankton in lakes?: An eight-year study in shallow hypertrophic and biologically dynamic lake Sobygard, Denmark. Microb Ecol 34:11–26

    Article  PubMed  Google Scholar 

  • Keddy P (2000) Wetland ecology. Principles and conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Lehours AC, Evans P, Bardot C, Joblin K, Gerard F (2007) Phylogenetic diversity of Archaea and Bacteria in the anoxic zone of a meromictic lake (Lake Pavin, France). Appl Environ Microbiol 73:2016–2019

    Article  PubMed  CAS  Google Scholar 

  • Levins R (1979) Coexistence in a variable environment. Am Nat 114:765–783

    Article  Google Scholar 

  • Lionard M, Ortega-Mayagoitia E, Rojo C (2005) Evolución del fitoplancton en el parque Nacional de Las Tablas de Daimiel (Ciudad Real, 1996–2001). Limnetica 24:171–182

    Google Scholar 

  • Lund JWG, Kipling C, LeCen ED (1958) The inverted method of estimating algal number the statistical basis of estimations and counting. Hydrobiologia 11:143–170

    Article  Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  • Marquet PA, Quiñones RA, Abades S, Labra F, Tognelli M, Arim M, Rivadeneira M (2005) Scaling and power-laws in ecological systems. J Exp Biol 208:1749–1769

    Article  PubMed  Google Scholar 

  • McCauley E (1984) The estimation of the abundance and biomass of zooplankton in samples. In: Downing JA, Rigler FH (eds) A manual on methods for the assessment of secondary production in freshwater. Blackwell, Oxford

    Google Scholar 

  • Moreno-Ostos E, da Silva SLR, de Vicente I, Cruz-Pizarro L (2007) Interannual and between-site variability in the occurrence of clear water phases in two shallow Mediterranean lakes. Aquat Ecol 41:285–297

    Article  Google Scholar 

  • Muylaert K, Declerck S, Van Wichelen J, De Meester L, Vyverman W (2006) An evaluation of the role of daphnids in controlling phytoplankton biomass in clear water versus turbid shallow lakes. Limnologica 36:69–78

    Article  Google Scholar 

  • Ortega-Mayagoitia E, Rojo C (2000a) Fitoplancton del Parque Nacional Las Tablas de Daimiel. II Las cianofíceas, los dinoflagelados, las criptofíceas, las crisofíceas y las xantofíceas. Anal Jar Bot Madrid 57:251–266

    Google Scholar 

  • Ortega-Mayagoitia E, Rojo C (2000b) Fitoplancton del Parque Nacional Las Tablas de Daimiel. III Diatomeas y clorofitas. Anal Jar Bot Madrid 58:17–37

    Google Scholar 

  • Ortega-Mayagoitia E, Rojo C, Armengol J (2000) Structure and dynamics of zooplankton in a semi-arid wetland, the National Park Las Tablas de Daimiel (Spain). Wetlands 20:629–638

    Article  Google Scholar 

  • Ortega-Mayagoitia E, Rojo C, Rodrigo MA (2002) Factors masking the trophic cascade in shallow eutrophic wetlands: evidence from a microcosm study. Archiv Hydrobiol 155:43–63

    Google Scholar 

  • Pithart D, Pichlová R, Bílý M, Hrbácek J, Novotná K, Pechar L (2007) Spatial and temporal diversity of small shallow waters in river Luznice floodplain. Hydrobiologia 584:265–275

    Article  CAS  Google Scholar 

  • Reynolds CS (1997) Vegetation processes in the pelagic: a model for ecosystem theory. Ecology Institute, Oldendorf-Luhe

    Google Scholar 

  • Reynolds CS, Huszar VLM, Kruk C, Naselli-Flores L, Melo S (2002) Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24:417–428

    Article  Google Scholar 

  • Rodrigo MA, Rojo C, Armengol X (2002) Plankton biodiversity in a landscape of shallow water bodies (Mediterranean coast, Spain). Hydrobiologia 506(509):317–326

    Google Scholar 

  • Rodrigo MA, Rojo C, Álvarez-Cobelas M (2003) Autothrophic and heterotrophic picoplankton in wetlands: differences with lake patterns. Int Rev Hydrobiol 88:464–481

    Article  Google Scholar 

  • Rojo C (1996) Fitoplancton. In: Alvarez-Cobelas M, Cirujano S (eds) Las Tablas de Daimiel: ecología acuática y sociedad. Ministerio de Medio Ambiente, Madrid

    Google Scholar 

  • Rojo C, Álvarez-Cobelas M (1993) Hypertrophic phytoplankton and the intermediate disturbance hypothesis. Hydrobiologia 249:43–57

    Article  Google Scholar 

  • Rojo C, Álvarez-Cobelas M (2003) Are there steady-state phytoplankton in the field? Hydrobiologia 502:3–12

    Article  Google Scholar 

  • Rojo C, Ortega-Mayagoitia E, Conforti V (1999) Fitoplancton del Parque Nacional de las Tablas de Daimiel. I Las Euglenofitas. Anal Jar Bot Madrid 57:15–23

    Google Scholar 

  • Rojo C, Ortega-Mayagoitia M, Álvarez-Cobelas M (2000a) Lack of pattern among phytoplankton assemblage. Or, what does the exception to the rule mean? Hydrobiologia 424:133–139

    Article  Google Scholar 

  • Rojo C, Ortega-Mayagoitia M, Rodrigo MA, Álvarez-Cobelas M (2000b) Phytoplancton structure and dynamics in a semiarid wetland, the National Park “Las Tablas de Daimiel” (Spain). Archiv Hydrobiol 148:397–419

    CAS  Google Scholar 

  • Rott E (1981) Some results from phytoplankton counting intercalibrations. Schweizerische Zeitschrift für Hydrologie 43:34–62

    Google Scholar 

  • Scheffer M, van Nes EH (2007) Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584:455–466

    Article  CAS  Google Scholar 

  • Shannon CE, Weaver W (1963) The mathematical theory of communication. University of Illinois Press, Urbana, IL

    Google Scholar 

  • Sherr EB, Sherr BF, Berman T (1991) High abundance of picoplankton-ingesting ciliates during late fall in lake Kinneret, Israel. J Plankton Res 13:789–799

    Article  Google Scholar 

  • Sokal RR, Rholf FJ (1981) Biometry, the principles and practice of statistics in biological research. W.H. Freeman, San Francisco, CA

    Google Scholar 

  • Sommaruga R, Robarts RD (1997) The significance of autotrophic and heterotrophic picoplankton in hypertrophic ecosystems. FEMS Microbiol Ecol 24:187–200

    Article  CAS  Google Scholar 

  • Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) PEG-model of seasonal succession of planktonic events in freshwaters. Archiv für Hydrobiologie 106:433–471

    Google Scholar 

  • Stockner J, Callieri C, Cronberg G (2000) Picoplankton and other non-bloom-forming cyanobacteria in lakes. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, The Netherlands

    Google Scholar 

  • Vörös L, Callieri C, Balogh KV, Bertoni R (1998) Freshwater picocyanobacteria along a trophic gradient and light quality. Hydrobiologia 369(370):117–125

    Article  Google Scholar 

  • Wagner C, Adrian R (2009) Exploring lake ecosystems: hierarchy responses to long-term change? Global Change Biol 15:1104–1115

    Article  Google Scholar 

  • Ward JV, Tockner K (2001) Biodiversity: towards a unifying theme for river ecology. Freshw Biol 46:807–819

    Article  Google Scholar 

  • Weisse T (1988) Dynamics of autotrophic picoplankton in Lake Constance. J Plankton Res 10:1179–1188

    Article  Google Scholar 

  • Yang X, Anderson ND, Dong X, Shen JI (2008) Surface sediment diatom assemblages and epilimnetic total phosphorus in large, shallow lakes of the Yangtze floodplain: their relationships and implications for assessing long-term eutrophication. Freshw Biol 53:1273–1290

    Article  CAS  Google Scholar 

  • Zwart G, Crump BC, Agterveld M, Hagen F, Han SK (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:141–155

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Rojo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Rojo, C., Rodrigo, M.A. (2010). Plankton Ecology and Diversity. In: Sánchez-Carrillo, S., Angeler, D. (eds) Ecology of Threatened Semi-Arid Wetlands. Wetlands: Ecology, Conservation and Management, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9181-9_6

Download citation

Publish with us

Policies and ethics