Bacterial Cell Printing

  • Bradley R. Ringeisen
  • Lisa A. Fitzgerald
  • Stephen E. Lizewski
  • Justin C. Biffinger
  • Peter K. Wu


The evolution of cell printing has made the prospect of printing tissues and organs a feasible technological goal. With much attention given to the potential impacts in the medical community, less interest has been directed towards the ability of these same technologies to print living bacteria. With potential applications ranging from isolation of bacteria from human infections or environmental samples to purification of carbon nanotubes containing thin films, the prospects of utilizing cell printing technologies to deposit high resolution patterns of bacteria should be considered. This chapter will first give experimental details of the three types of cell printers with demonstrated capabilities to print living bacteria: ink jet, electrohydrodynamic jetting and modified laser induced forward transfer (LIFT). We will then summarize some of the recent bacteria printing results including deposition of genetically engineered bacteria and environmental samples. We will also show that single cells can be printed using these techniques, potentially allowing a single bacterium to be isolated from highly complex, multi-strain cultures or samples. We will end the chapter by discussing the demonstrated capabilities of the different cell printing technologies and discuss potential applications.


Titanium Toxicity Quartz Dioxide Agar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ringeisen BR, Othon CM, Barron JA et al (2006) Jet-based methods to print living cells. Biotechnol J 1:930–948PubMedCrossRefGoogle Scholar
  2. 2.
    Mironov V, Boland T, Trusk T et al (2003) Organ printing: computer-aided jet-based 3d tissue engineering. Trends Biotechnol 21:157–161PubMedCrossRefGoogle Scholar
  3. 3.
    Boland T, Xu T, Damon B et al (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1:1910–1917CrossRefGoogle Scholar
  4. 4.
    Hood BL, Darfler MM, Guiel TG et al (2005) Proteomic analysis of formalin-fixed prostate cancer tissue. Mol Cell Proteomics 4:1741–1753PubMedCrossRefGoogle Scholar
  5. 5.
    Barron JA, Krizman David B, Ringeisen Bradley R (2005) Laser printing of single cells: statistical analysis, cell viability, and stress. Ann Biomed Eng 33:121–130PubMedCrossRefGoogle Scholar
  6. 6.
    Mongkoldhumrongkul N, Best S, Aarons E et al (2009) Bio-electrospraying whole human blood: analysing cellular viability at a molecular level. J Tissue Eng Regen Med 3:562–566PubMedCrossRefGoogle Scholar
  7. 7.
    Clarke JDW, Jayasinghe SN (2008) Bio-electrosprayed multicellular zebrafish embryos are viable and develop normally. Biomed Mater 3:4CrossRefGoogle Scholar
  8. 8.
    Ringeisen BR, Chrisey DB, Pique A et al (2002) Generation of mesoscopic patterns of viable escherichia coli by ambient laser transfer. Biomaterials 23:161–166PubMedCrossRefGoogle Scholar
  9. 9.
    Barron JA, Rosen R, Jones-Meehan J et al (2004) Biological laser printing of genetically modified escherichia coli for biosensor applications. Biosensors Bioelectron 20:246–252CrossRefGoogle Scholar
  10. 10.
    Wang X, Yan Y, Pan Y et al (2006) Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng 12:83–90PubMedCrossRefGoogle Scholar
  11. 11.
    Yan Y, Wang X, Pan Y et al (2005) Fabrication of viable tissue-engineered constructs with 3d cell-assembly technique. Biomaterials 26:5864–5871PubMedCrossRefGoogle Scholar
  12. 12.
    Xu T, Gregory CA, Molnar P et al (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27:3580–3588PubMedGoogle Scholar
  13. 13.
    Jayasinghe S, Townsend-Nicholson A (2006) Bio-electrosprays: the next generation of electrified jets. Biotechnol J 1:1018–1022PubMedCrossRefGoogle Scholar
  14. 14.
    Townsend-Nicholson A, Jayasinghe S (2006) Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds. Biomacromolecules 7:3364–3369PubMedCrossRefGoogle Scholar
  15. 15.
    Barron JA, Wu P, Ladouceur HD et al (2004) Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices 6:139–147PubMedCrossRefGoogle Scholar
  16. 16.
    Othon CM, Wu X, Anders JJ et al (2008) Single-cell printing to form three-dimensional lines of olfactory ensheathing cells. Biomed Mater 3:034101PubMedCrossRefGoogle Scholar
  17. 17.
    Ringeisen BR, Kim H, Barron JA et al (2004) Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng 10:483–491PubMedCrossRefGoogle Scholar
  18. 18.
    Hopp B, Smausz T, Kresz N et al (2005) Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng 11:1817–1823PubMedCrossRefGoogle Scholar
  19. 19.
    Chen CY, Barron JA, Ringeisen BR (2006) Cell patterning without chemical surface modification: cell–cell interacftions between bovine aortic endothelial cells (baec) on a homogeneous cell-adherent hydrogel. Appl Surf Sci 252:8641–8645CrossRefGoogle Scholar
  20. 20.
    Roth EA, Xu T, Das M et al (2004) Ink-jet printing for high-throughput cell patterning. Biomaterials 25:3707–3715PubMedCrossRefGoogle Scholar
  21. 21.
    Xu T, Petridou S, Lee EH et al (2004) Construction of high-density bacterial colony arrays and patterns by the ink-jet method. Biotechnol Bioeng 85:29–33PubMedCrossRefGoogle Scholar
  22. 22.
    Ringeisen BR, Lizewski SE, Fitzgerald LA, Biffinger JC, Knight CL, Crookes-Goodson WJ, Wu PK (2010) Single cell isolation of bacteria from microbial fuel cells and potomac river sediment. Electroanalysis 22(7–8):875–882Google Scholar
  23. 23.
    Pardo L, Boland T (2003) Characterization of patterned self-assembled monolayers and protein arrays generated by teh ink-jet method. Langmuir 19:1462–1466CrossRefGoogle Scholar
  24. 24.
    Merrin J, Leibler S, Chuang J (2007) Printing multistrain bacterial patterns with a piezoelectric inkjet printer. PLoS ONE 2:e663PubMedCrossRefGoogle Scholar
  25. 25.
    Eagles PAM, Qureshi AN, Jayasinghe SN (2006) Electrohydrodynamic jetting of mouse neuronal cells. Biochem J 394:375–378PubMedCrossRefGoogle Scholar
  26. 26.
    Jayasinghe SN, Qureshi AN, Eagles PAM (2006) Electrohydrodynamic jet processing: an advanced electric-field-driven jetting phenomenon for processing living cells. Small 2: 216–219PubMedCrossRefGoogle Scholar
  27. 27.
    Kim JH, Hwang J, Jung HI (2009) Direct pattern formation of bacterial cells using micro-droplets generated by electrohydrodynamic forces. Microfluid Nanofluid doi: 10.1007/s10404-009-0441-6Google Scholar
  28. 28.
    Barron JA, Wu P, Ladouceur HD et al (2004) Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices 6:139–147PubMedCrossRefGoogle Scholar
  29. 29.
    Saunders R, Gough J, Derby B (2005) Ink jet printing of mammalian primary cells for tissue engineering applications. Mater Res Soc Symp Proc 845:57–62Google Scholar
  30. 30.
    Sumerel J, Lewis J, Doraiswamy A et al (2006) Pizoelectric ink jet processing of materials for medical and biological applications. Biotechnol J 1:976–987PubMedCrossRefGoogle Scholar
  31. 31.
    Barron J, Young H, Dlott D et al (2005) Printing of protein microarrays via a capillary-free fluid jetting mechanism. Proteomics 5:4138–4144PubMedCrossRefGoogle Scholar
  32. 32.
    Bechor O, Smulski DR, Van Dyk TK et al (2002) Recombinant microorganisms as environmental biosensors: pollutants detection by escherichia coli bearing faba′::Lux fusions. J Biotechnol 94:125–132PubMedCrossRefGoogle Scholar
  33. 33.
    Ringeisen BR, Henderson E, Wu PK et al (2006) High power density from a miniature microbial fuel cell using shewanella oneidensis dsp10. Environ Sci Technol 40:2629–2634PubMedCrossRefGoogle Scholar
  34. 34.
    Bond DR, Holmes DE, Tender LM et al (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485PubMedCrossRefGoogle Scholar
  35. 35.
    Tender LM, Reimers CE, Stecher HA et al (2002) Harnessing microbially generated power on the seafloor. Nat Biotechnol 20:821–825PubMedGoogle Scholar
  36. 36.
    Kim H, Choo YJ, Song J et al (2007) Marinobacterium litorale sp nov in the order oceanospirillales. Int J Syst Evol Microbiol 57:1659–1662PubMedCrossRefGoogle Scholar
  37. 37.
    Landa BB, de Werd HAE, Gardener BBM et al (2002) Comparison of three methods for monitoring populations of different genotypes of 2,4-diacetylphloroglucinol-producing pseudomonas fluorescens in the rhizosphere. Phytopathology 92:129–137PubMedCrossRefGoogle Scholar
  38. 38.
    Nye KJ, Turner T, Coleman DJ et al (2001) A comparison of the isolation rates of salmonella and thermophilic campylobacter species after direct inoculation of media with a dilute faecal suspension and undiluted faecal material. J Med Microbiol 50:659–662PubMedGoogle Scholar
  39. 39.
    Takehara T, Kuniyasu K, Mori M et al (2003) Use of a nitrate-nonutilizing mutant and selective media to examine population dynamics of fusarium oxysporum f. Sp spinaciae in soil. Phytopathology 93:1173–1181PubMedCrossRefGoogle Scholar
  40. 40.
    Lee JK, Jung DW, Yoon K et al (2006) Effect of diluent salt concentration and ph on the enumeration of vibrio parahaemolyticus by direct plating on selective agar. Food Sci Biotechnol 15:866–870Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Bradley R. Ringeisen
    • 1
  • Lisa A. Fitzgerald
    • 1
  • Stephen E. Lizewski
    • 1
  • Justin C. Biffinger
    • 1
  • Peter K. Wu
    • 2
  1. 1.Department of ChemistryNaval Research LaboratoryWashingtonUSA
  2. 2.Department of PhysicsSouthern Oregon UniversityAshlandUSA

Personalised recommendations