Skip to main content

Bacterial Cell Printing

  • Chapter
  • First Online:
Cell and Organ Printing

Abstract

The evolution of cell printing has made the prospect of printing tissues and organs a feasible technological goal. With much attention given to the potential impacts in the medical community, less interest has been directed towards the ability of these same technologies to print living bacteria. With potential applications ranging from isolation of bacteria from human infections or environmental samples to purification of carbon nanotubes containing thin films, the prospects of utilizing cell printing technologies to deposit high resolution patterns of bacteria should be considered. This chapter will first give experimental details of the three types of cell printers with demonstrated capabilities to print living bacteria: ink jet, electrohydrodynamic jetting and modified laser induced forward transfer (LIFT). We will then summarize some of the recent bacteria printing results including deposition of genetically engineered bacteria and environmental samples. We will also show that single cells can be printed using these techniques, potentially allowing a single bacterium to be isolated from highly complex, multi-strain cultures or samples. We will end the chapter by discussing the demonstrated capabilities of the different cell printing technologies and discuss potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ringeisen BR, Othon CM, Barron JA et al (2006) Jet-based methods to print living cells. Biotechnol J 1:930–948

    Article  PubMed  CAS  Google Scholar 

  2. Mironov V, Boland T, Trusk T et al (2003) Organ printing: computer-aided jet-based 3d tissue engineering. Trends Biotechnol 21:157–161

    Article  PubMed  CAS  Google Scholar 

  3. Boland T, Xu T, Damon B et al (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1:1910–1917

    Article  Google Scholar 

  4. Hood BL, Darfler MM, Guiel TG et al (2005) Proteomic analysis of formalin-fixed prostate cancer tissue. Mol Cell Proteomics 4:1741–1753

    Article  PubMed  CAS  Google Scholar 

  5. Barron JA, Krizman David B, Ringeisen Bradley R (2005) Laser printing of single cells: statistical analysis, cell viability, and stress. Ann Biomed Eng 33:121–130

    Article  PubMed  Google Scholar 

  6. Mongkoldhumrongkul N, Best S, Aarons E et al (2009) Bio-electrospraying whole human blood: analysing cellular viability at a molecular level. J Tissue Eng Regen Med 3:562–566

    Article  PubMed  CAS  Google Scholar 

  7. Clarke JDW, Jayasinghe SN (2008) Bio-electrosprayed multicellular zebrafish embryos are viable and develop normally. Biomed Mater 3:4

    Article  Google Scholar 

  8. Ringeisen BR, Chrisey DB, Pique A et al (2002) Generation of mesoscopic patterns of viable escherichia coli by ambient laser transfer. Biomaterials 23:161–166

    Article  PubMed  CAS  Google Scholar 

  9. Barron JA, Rosen R, Jones-Meehan J et al (2004) Biological laser printing of genetically modified escherichia coli for biosensor applications. Biosensors Bioelectron 20:246–252

    Article  CAS  Google Scholar 

  10. Wang X, Yan Y, Pan Y et al (2006) Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng 12:83–90

    Article  PubMed  CAS  Google Scholar 

  11. Yan Y, Wang X, Pan Y et al (2005) Fabrication of viable tissue-engineered constructs with 3d cell-assembly technique. Biomaterials 26:5864–5871

    Article  PubMed  CAS  Google Scholar 

  12. Xu T, Gregory CA, Molnar P et al (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27:3580–3588

    PubMed  CAS  Google Scholar 

  13. Jayasinghe S, Townsend-Nicholson A (2006) Bio-electrosprays: the next generation of electrified jets. Biotechnol J 1:1018–1022

    Article  PubMed  CAS  Google Scholar 

  14. Townsend-Nicholson A, Jayasinghe S (2006) Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds. Biomacromolecules 7:3364–3369

    Article  PubMed  CAS  Google Scholar 

  15. Barron JA, Wu P, Ladouceur HD et al (2004) Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices 6:139–147

    Article  PubMed  CAS  Google Scholar 

  16. Othon CM, Wu X, Anders JJ et al (2008) Single-cell printing to form three-dimensional lines of olfactory ensheathing cells. Biomed Mater 3:034101

    Article  PubMed  Google Scholar 

  17. Ringeisen BR, Kim H, Barron JA et al (2004) Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng 10:483–491

    Article  PubMed  CAS  Google Scholar 

  18. Hopp B, Smausz T, Kresz N et al (2005) Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng 11:1817–1823

    Article  PubMed  CAS  Google Scholar 

  19. Chen CY, Barron JA, Ringeisen BR (2006) Cell patterning without chemical surface modification: cell–cell interacftions between bovine aortic endothelial cells (baec) on a homogeneous cell-adherent hydrogel. Appl Surf Sci 252:8641–8645

    Article  CAS  Google Scholar 

  20. Roth EA, Xu T, Das M et al (2004) Ink-jet printing for high-throughput cell patterning. Biomaterials 25:3707–3715

    Article  PubMed  CAS  Google Scholar 

  21. Xu T, Petridou S, Lee EH et al (2004) Construction of high-density bacterial colony arrays and patterns by the ink-jet method. Biotechnol Bioeng 85:29–33

    Article  PubMed  CAS  Google Scholar 

  22. Ringeisen BR, Lizewski SE, Fitzgerald LA, Biffinger JC, Knight CL, Crookes-Goodson WJ, Wu PK (2010) Single cell isolation of bacteria from microbial fuel cells and potomac river sediment. Electroanalysis 22(7–8):875–882

    Google Scholar 

  23. Pardo L, Boland T (2003) Characterization of patterned self-assembled monolayers and protein arrays generated by teh ink-jet method. Langmuir 19:1462–1466

    Article  CAS  Google Scholar 

  24. Merrin J, Leibler S, Chuang J (2007) Printing multistrain bacterial patterns with a piezoelectric inkjet printer. PLoS ONE 2:e663

    Article  PubMed  Google Scholar 

  25. Eagles PAM, Qureshi AN, Jayasinghe SN (2006) Electrohydrodynamic jetting of mouse neuronal cells. Biochem J 394:375–378

    Article  PubMed  CAS  Google Scholar 

  26. Jayasinghe SN, Qureshi AN, Eagles PAM (2006) Electrohydrodynamic jet processing: an advanced electric-field-driven jetting phenomenon for processing living cells. Small 2: 216–219

    Article  PubMed  CAS  Google Scholar 

  27. Kim JH, Hwang J, Jung HI (2009) Direct pattern formation of bacterial cells using micro-droplets generated by electrohydrodynamic forces. Microfluid Nanofluid doi: 10.1007/s10404-009-0441-6

    Google Scholar 

  28. Barron JA, Wu P, Ladouceur HD et al (2004) Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices 6:139–147

    Article  PubMed  CAS  Google Scholar 

  29. Saunders R, Gough J, Derby B (2005) Ink jet printing of mammalian primary cells for tissue engineering applications. Mater Res Soc Symp Proc 845:57–62

    CAS  Google Scholar 

  30. Sumerel J, Lewis J, Doraiswamy A et al (2006) Pizoelectric ink jet processing of materials for medical and biological applications. Biotechnol J 1:976–987

    Article  PubMed  CAS  Google Scholar 

  31. Barron J, Young H, Dlott D et al (2005) Printing of protein microarrays via a capillary-free fluid jetting mechanism. Proteomics 5:4138–4144

    Article  PubMed  CAS  Google Scholar 

  32. Bechor O, Smulski DR, Van Dyk TK et al (2002) Recombinant microorganisms as environmental biosensors: pollutants detection by escherichia coli bearing faba′::Lux fusions. J Biotechnol 94:125–132

    Article  PubMed  CAS  Google Scholar 

  33. Ringeisen BR, Henderson E, Wu PK et al (2006) High power density from a miniature microbial fuel cell using shewanella oneidensis dsp10. Environ Sci Technol 40:2629–2634

    Article  PubMed  CAS  Google Scholar 

  34. Bond DR, Holmes DE, Tender LM et al (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485

    Article  PubMed  CAS  Google Scholar 

  35. Tender LM, Reimers CE, Stecher HA et al (2002) Harnessing microbially generated power on the seafloor. Nat Biotechnol 20:821–825

    PubMed  CAS  Google Scholar 

  36. Kim H, Choo YJ, Song J et al (2007) Marinobacterium litorale sp nov in the order oceanospirillales. Int J Syst Evol Microbiol 57:1659–1662

    Article  PubMed  CAS  Google Scholar 

  37. Landa BB, de Werd HAE, Gardener BBM et al (2002) Comparison of three methods for monitoring populations of different genotypes of 2,4-diacetylphloroglucinol-producing pseudomonas fluorescens in the rhizosphere. Phytopathology 92:129–137

    Article  PubMed  CAS  Google Scholar 

  38. Nye KJ, Turner T, Coleman DJ et al (2001) A comparison of the isolation rates of salmonella and thermophilic campylobacter species after direct inoculation of media with a dilute faecal suspension and undiluted faecal material. J Med Microbiol 50:659–662

    PubMed  CAS  Google Scholar 

  39. Takehara T, Kuniyasu K, Mori M et al (2003) Use of a nitrate-nonutilizing mutant and selective media to examine population dynamics of fusarium oxysporum f. Sp spinaciae in soil. Phytopathology 93:1173–1181

    Article  PubMed  Google Scholar 

  40. Lee JK, Jung DW, Yoon K et al (2006) Effect of diluent salt concentration and ph on the enumeration of vibrio parahaemolyticus by direct plating on selective agar. Food Sci Biotechnol 15:866–870

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley R. Ringeisen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ringeisen, B.R., Fitzgerald, L.A., Lizewski, S.E., Biffinger, J.C., Wu, P.K. (2010). Bacterial Cell Printing. In: Ringeisen, B., Spargo, B., Wu, P. (eds) Cell and Organ Printing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9145-1_14

Download citation

Publish with us

Policies and ethics