Storage, Processing and Preservation

Chapter

Abstract

Tissues can malfunction as a result of numerous processes including congenital malformation, disease and damage. Most tissues in the human body have a limited capacity for regeneration, in response to such malfunction.

Keywords

Water Activity Viable Tissue Peracetic Acid Tissue Graft Full Thickness Skin Wound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wasiak J, Clark C, Villanueva E (2008) Autologous cartilage implantation for full thickness articular cartilage defects of the knee (review). The Cochrane Library: Issue 4Google Scholar
  2. 2.
    Burwell RG (1963) Studies in the transplantation of bone V. The capacity of fresh and treated homografts of bone to evoke transplantation immunity. J Bone Joint Surg 45B:366–401Google Scholar
  3. 3.
    Aspenberg P, Thoren K (1990) Lipid extraction enhances bank bone incorporation: an experiment in rabbits. Acta Orthop Scand 61(6):546–548PubMedCrossRefGoogle Scholar
  4. 4.
    Achauer BM, Black KS, Waxman KS et al (1986) Long-term skin allograft survival after short-term cyclosporin treatment in a patient with massive burns. Lancet 1(8471):14–15PubMedCrossRefGoogle Scholar
  5. 5.
    Dreno B, Meignier M, Bignon JD et al (1987) Immunological mechanisms of cyclosporin in skin allograft. Lancet 2 (8570):1270–1271PubMedCrossRefGoogle Scholar
  6. 6.
    Moreau MF, Gallois Y, Basle MF et al (2000) Gamma irradiation of human bone allografts alters medullary lipids and releases toxic compounds for osteoblast-like cells. Biomaterials 2(4)1:369–376CrossRefGoogle Scholar
  7. 7.
    Laitinan M, Kivikan R and Hirn M (2006) Lipid oxidation may reduce the quality of a fresh-frozen bone allograft. Is the approved storage temperature too high? Acta Orthop 77(3):418–421Google Scholar
  8. 8.
    Kearney JN (1996) Banking of skin grafts and biological dressings. In: Settle JAD (ed) Principles and practice of burns management. Churchill Livingstone, pp 329–351Google Scholar
  9. 9.
    Guidelines for the Blood Transfusion Services in the United Kingdom 7th edn 2005. The Stationery Office, LondonGoogle Scholar
  10. 10.
    Kreis RW, Vloemans AFPM, Hoekstra MI et al (1989) The use of non viable glycerol-preserved cadaver skin combined with widely expanded autografts in the treatment of extensive third-degree burns. J Trauma 29:51–54PubMedCrossRefGoogle Scholar
  11. 11.
    Huang Q, Pegg DE, Kearney JN (2004) An improved glycerol banking method used in the preservation of non viable skin allografts. Cell Tissue Bank 5:3–21PubMedCrossRefGoogle Scholar
  12. 12.
    Ross A, Kearney JN (2004) The measurement of water activity in allogeneic skin grafts preserved using high concentration glycerol or propylene glycol. Cell Tissue Bank 5:37–44PubMedCrossRefGoogle Scholar
  13. 13.
    Kearney JN (2005) Guidelines on processing and clinical use of skin allografts. Clin Dermatol 23:357–364PubMedCrossRefGoogle Scholar
  14. 14.
    Backenroth R (1998) Glycerol induced acute renal failure attenuates subsequent HgCl2 – associated nephrotoxicity: correlation of renal function and morphology. Ren Fail 20:15–26PubMedCrossRefGoogle Scholar
  15. 15.
    Zurovsky Y (1993) Models of glycerol-induced acute renal failure in rats. J Basic Clin Physiol Pharmacol 4:213–228PubMedCrossRefGoogle Scholar
  16. 16.
    Uche EM, Arowolo RO, Akinyemi JO (1987) Toxic effects of glycerol in swiss albino rats. Res Commun Chem Pathol Pharmacol 56:125–128PubMedGoogle Scholar
  17. 17.
    Mirsadraee S, Wilcox HE, Watterson KG et al (2007) Biocompatibility of acellular human pericardium. J Surg Res 143:407–414PubMedCrossRefGoogle Scholar
  18. 18.
    Rosenquist MD, Cram AF, Kealey GP (1988) Skin preservation at 4°C: a species comparison. Cryobiology 25:31–37PubMedCrossRefGoogle Scholar
  19. 19.
    Taylor MJ, Hunt CJ (1985) A new preservation solution for storage of corneas at low temperatures. Curr Eye Res 4(9):963–973PubMedCrossRefGoogle Scholar
  20. 20.
    Yusof N (1999) Quality system for the radiation sterilisation of tissue allografts. Adv Tissue Bank 3:257–281CrossRefGoogle Scholar
  21. 21.
    Agurregoicoa V, Kearney JN, Davies GA et al (1989) Effects of antifungals on the viability of heart valve cusp derived fibroblasts. Cardiovasc Res 23(12):1058–1061CrossRefGoogle Scholar
  22. 22.
    Betow C (1982) 20 years experience with homografts in ear surgery. J Laryngol Otol Suppl 5:1–28PubMedGoogle Scholar
  23. 23.
    Von Garrel T, Knaepler H (1999) Surgical femoral head allograft processing system using moderate heat. Adv Tissue Bank 3:283–354CrossRefGoogle Scholar
  24. 24.
    Burwell RG (1966) Studies in the transplantation of bone VIII. Treated composite homograft-autografts of cancellous bone: an analysis of inductive mechanisms in bone transplantation. J Bone J Surg 48B:532–566Google Scholar
  25. 25.
    Kearney JN, Bojar R, Holland KT (1993) Ethylene oxide sterilisation of allogeneic bone implants. Clin Mat 12:29–33CrossRefGoogle Scholar
  26. 26.
    Butterfield M, Fisher J, Kearney JN et al (1991) Hydrodynamic function of second generation porcine bioprosthetic heart valves. J Card Surg 6(4):490–498PubMedCrossRefGoogle Scholar
  27. 27.
    Pruss A, Kao M, Kiesewetter H et al (1999) Virus safety of avital bone tissue transplants: evaluation of sterilization steps of spongiosa cuboids using a peracetic acid-methanol mixture. Biologicals 27:196–201CrossRefGoogle Scholar
  28. 28.
    Scheffler SU, Gonnermann J, Kamp J et al (2008) Remodelling of ACL allografts is inhibited by peracetic acid sterilization. Clin Orthop Relat Res 466(8):1810–1818PubMedCrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  1. 1.Head of Tissue ServicesNHSBT Tissue ServicesLiverpoolUK

Personalised recommendations