Is Nanoscience a Mode 2 Field? Disciplinary Differences in Modes of Knowledge Production

  • Dorothea JansenEmail author
  • Regina von Görtz
  • Richard Heidler
Part of the Higher Education Dynamics book series (HEDY, volume 32)


Nanotechnology is considered a key technology of the twenty-first century. It is widely expected that technological advances in the field of nanoscience will bring about social, environmental and economic benefits. Nanotechnology is also regarded as a paradigmatic field for a new “Mode 2” of knowledge production that is transdisciplinary in nature and oriented towards problem-solving. The aim of this chapter is to measure empirically the prevalence of “Mode 2 knowledge production” for research groups working in the field of nanoscience. Disciplinary differences are shown by comparing the knowledge generation in nanoscience to that of astrophysics (a field of science primarily concerned with basic research) and economics (a social science). In addition, it is determined to what extent policy instruments promote and generate this new form of knowledge production in all three fields. Finally, it is established what effect one of these policies – the promotion of science–industry ties – has on the scientific performance of research groups in nanoscience.


Knowledge Production Mode 2Mode Application Context Industry Relation Network Partner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amaral, A., Meek, V.L., Larsen, I. (2003). The Higher Education Managerial Revolution? Higher Education Dynamics. Vol. 3. Dordrecht: Kluwer Academic Publishers.Google Scholar
  2. Blau, P.M. (1977). Inequality and Heterogeneity. New York: Free Press.Google Scholar
  3. Bonaccorsi, A. (2008). Search Regimes and the Industrial Dynamics of Science. Minerva, 46(3), 285–315.CrossRefGoogle Scholar
  4. Bonaccorsi, A., Thoma, G. (2007). Institutional Complementarity and Inventive Performance in Nanoscience and Technology. Research Policy, 36(6), 813–831.CrossRefGoogle Scholar
  5. Bush, V. (1945). Science: The Endless Frontier. United States Office of Scientific Research and Development. Washington, DC: United States Government Printing Office.Google Scholar
  6. Cordis. (2007). Seventh Framework Programme. Programme on Cooperation. Accessed 15 January 2008.
  7. Deutsche Forschungsgemeinschaft. (2006). Information Cards. Accessed 30 November 2009.
  8. Drexler, E.K. (1986). The Engines of Creation: The Coming Era of Nanotechnology. New York: Anchor Books.Google Scholar
  9. Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans. Philadelphia, PA: Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
  10. Etzkowitz, H. (1998). The Norms of Entrepreneurial Science: Cognitive Effects of the New University-Industry Linkages. Research Policy, 27, 823–833.CrossRefGoogle Scholar
  11. Etzkowitz, H., Leydesdorff, L. (1998). The Endless Transition: A “Triple Helix of University-Industry-Government Relations. Minerva, 36, 203–208.CrossRefGoogle Scholar
  12. European Commission. (2007). EU Policy for Nanosciences and Nanotechnologies. Brussels: European Commission.Google Scholar
  13. Federal Ministry of Education and Research (BMBF). (2004). Nanotechnology Conquers Markets. German Innovative Initiative for Nanotechnology. Bonn, Berlin: BMBF.Google Scholar
  14. Federal Ministry of Education and Research (BMBF). (2006). The High-Tech Strategy for Germany. Bonn, Berlin: BMBF.Google Scholar
  15. Franke, K., Wald, A., Bartl, K. (2006). Die Wirkung von Reformen im deutschen Forschungssystem. Eine Studie in den Feldern Astrophysik, Nanotechnologie und Mikroökonomie. Speyer: Speyer Forschungsberichte 245.Google Scholar
  16. Funtowicz, S.O., Ravetz, J. (1993). The Emergence of Post-normal Science. In R. von Schomberg (Ed.), Science, Politics and Morality. Scientific Uncertainty and Decision Making (pp. 85–126). Dordrecht: Kluwer Academic Publishers.Google Scholar
  17. Gibbons, M., Limoges, C., Nowotny, H., Schwartzmann, S., Scott, P., Trow, M. (1994). The New Production of Knowledge. The Dynamics of Science and Research in Contemporary Societies. London: Sage.Google Scholar
  18. Gläser, J. (2001). Mode 2a and Mode 2b (in German, Modus 2a und Modus 2b). In G. Bender (Ed.), Neue Formen der Wissenserzeugung (pp. 83–99). Frankfurt a. M: Campus.Google Scholar
  19. Godin, B. (1998). Writing Performative History: The New New Atlantis? Social Studies of Science, 28(3), 465–483.CrossRefGoogle Scholar
  20. Goldfarb, B. (2008). The Effect of Government Contracting on Academic Research: Does the Source of Funding Affect Scientific Output. Research Policy, 37(1), 41–58.CrossRefGoogle Scholar
  21. Heinze, T., Kuhlmann, S. (2007). Analysis of Heterogenous Collaboration in the German Research System with a Focus on Nanotechnology. In D. Jansen (Ed.), New Forms of Governance in Research Organizations. Disciplinary Approaches, Interfaces and Integration (pp. 189–209). Dordrecht: Springer.Google Scholar
  22. Hellström, T., Jacob, M. (2000). Scientification of Politics or Politization of Science? Traditionalist Science-Policy Discourse and its Quarrels with Mode 2 Epistemology. Social Epistemology, 14(1), 69–77.CrossRefGoogle Scholar
  23. Hicks, D.M., Katz, J.S. (1996). Where is Science Going? Science, Technology and Human Values, 21(4), 379–406.CrossRefGoogle Scholar
  24. Hullman, A., Meyer, M. (2003). Publications and Patents in Nanotechnology. An Overview of Previous Studies and the State of the Art. Scientometrics, 53(2), 507–527.CrossRefGoogle Scholar
  25. Jacob, M. (2001). Managing the Institutionalisation of Mode 2 Knowledge Production. Science Studies, 14(2), 83–100.Google Scholar
  26. Jansen, D. (1995). Convergence of Basic and Applied Research? Research Orientations in German High-Temperature Superconductor Research. Science, Technology and Human Values, 20(2), 197–233.CrossRefGoogle Scholar
  27. Jansen, D. (1996). Nationale Innovationssysteme, soziales Kapital und Innovationsstrategien von Unternehmen. Soziale Welt, 45(4), 411–434.Google Scholar
  28. Jansen, D. (2006). The Governance of Research Networks – The Role of Self-Organization, Organizations and External Stakeholders. Paper presented at the EASST Conference 2006: Lausanne, Switzerland.Google Scholar
  29. Jansen, D. (2007). Governance of Research – Working Towards Interdisciplinary Concepts. In D. Jansen (Ed.), New Forms of Governance in Research Organizations. Disciplinary Approaches, Interfaces and Integration (pp. 109–133). Dordrecht: Springer.CrossRefGoogle Scholar
  30. Jansen, D., Wald, A., Franke, K., Schmoch, U., Schubert, T. (2007). Third Party Research Funding and Performance in Research. On the Effects of Institutional Conditions on Research Performance of Teams. Kölner Zeitschrift für Soziologie und Sozialpsychologie, 59(1), 125–149.CrossRefGoogle Scholar
  31. Johnson, A. (2004). The End of Pure Science. Science Policy from Bayh-Dole to the NNI. In D. Baird, A. Nordmann, J. Schummer (Eds.), Discovering the Nanoscale. Amsterdam: IOS Press.Google Scholar
  32. Jotterand, F. (2006). The Politicization of Science and Technology: Its Implications for Nanotechnology. The Journal of Law, Medicine and Ethics, 34(4), 658–666.CrossRefGoogle Scholar
  33. Kearnes, M.B., Macnaghten, P.M. (2006). (Re)Imaging Nanotechnology. Science as Culture, 15(4), 279–290.CrossRefGoogle Scholar
  34. Lenhard, J., Lücking, H., Schwechheimer, H. (2006). Expert Knowledge, Mode 2 and Scientific Disciplines: Two Contrasting Views. Science and Public Policy, 33(5), 341–350.CrossRefGoogle Scholar
  35. Looy, B.V., Ranga, M., Callaert, J., Debackere, K., Zimmermann, E. (2004). Combining Entrepreneurial and Scientific Performance in Academia: Towards a Compounded and Reciprocal Matthew-Effect. Research Policy, 33(3), 425–441.CrossRefGoogle Scholar
  36. Luhmann, N. (1973). Selbststeuerung der Wissenschaft. In N. Luhmann (Ed.), Soziologische Aufklärung. Aufsätze zur Theorie sozialer Systeme (pp. 232–252). Vol. 1, 3rd ed. Opladen: Westdeutscher Verlag.Google Scholar
  37. Mayntz, R., Scharpf, F.W. (1990). Chances and Problems in the Political Guidance of Research Systems. In H. Krupp (Ed.), Technikpolitik angesichts der Umweltkatastrophe (pp. 61–83). Heidelberg: Physica-Verlag.CrossRefGoogle Scholar
  38. Mody, C. (2004). How Probe Microscopists Became Nanotechnologists. In D. Baird, A. Nordmann, J. Schummer (Eds.), Discovering the Nanoscale (pp. 119–133). Amsterdam: IOS Press.Google Scholar
  39. Nagi, S.Z., Corwin, R.G. (1972). The Research Enterprise: An Overview. In S.Z. Nagi, R.G. Corwin (Eds.), The Social Contexts of Research (pp. 161–191). New York: Wiley.Google Scholar
  40. Nelson, R.R. (1989). What is Private and What Is Public About Technology? Science, Technology and Human Values, 14, 229–241.CrossRefGoogle Scholar
  41. Nowotny, H., Scott, P., Gibbons, M. (2001). Rethinking Science: Knowledge in an Age of Uncertainty. Cambridge: Polity.Google Scholar
  42. Pollitt, C., Bouckaert, G. (2004). Public Management Reform: A Comparative Analysis. 2nd ed. Oxford: Oxford University Press.Google Scholar
  43. Powell, W.W. (1990). Neither Market nor Hierarchy: Network Forms of Organization. Research in Organizational Behavior, 12, 295–336.Google Scholar
  44. Roco, M.C., Bainbridge, W.S. (Eds.). (2002). Converging Technologies for Improving Human Performance. Arlington: National Science Foundation.Google Scholar
  45. Schimank, U. (2008). Ökonomisierung der Hochschulen – eine Makro-Meso-Mikro-Perspektive.In K.-S. Rehberg (Ed.), Die Natur der Gesellschaft. Verhandlungen des 33. Kongresses der Deutschen Gesellschaft für Soziologie in Kassel, 2006 (pp. 622–635). Frankfurt a. M: Campus.Google Scholar
  46. Schmoch, U. (2003). Akademische Forschung und industrielle Forschung. Perspektiven der Interaktion. Frankfurt/New York: Campus.Google Scholar
  47. Schummer, J. (2004). Multidisciplinarity, Interdisciplinarity, and Patterns of Research Collaboration in Nanoscience and Nanotechnology. Scientometrics, 59(3), 425–465.CrossRefGoogle Scholar
  48. Selin, C. (2007). Expectations and the Emergence of Nanotechnology. Science, Technology and Human Values, 32(2), 196–220.CrossRefGoogle Scholar
  49. Shinn, T. (1999). Change or Mutation? Reflections on the Foundations of Contemporary Science. Social Science Information/Information sur les sciences socials, 39, 149–176.CrossRefGoogle Scholar
  50. Technology Transfer Center. (2007). Government funding, companies and applications in nanotechnology worldwide 2007.Google Scholar
  51. Wald, A. (2007). The Effect of ‘Mode 2’-Related Policy on the Research Process: The Case of Publicly Funded German Nanotechnology. Science Studies, 20(1), 26–51.Google Scholar
  52. Wald, A., Franke, K., Jansen, D. (2007). Reforms and Scientific Production. Evidence from German astrophysics. In D. Jansen (Ed.), New Forms of Governance in Research Organizations. Disciplinary Approaches, Interfaces and Integration (pp. 213–232). Dordrecht: Springer.Google Scholar
  53. Weingart, P. (1997a). From “Finalization” to “Mode 2”: Old Wine in New Bottles? Social Science Information, 36(4), 591–613.CrossRefGoogle Scholar
  54. Weingart, P. (1997b). Neue Formen der Wissensproduktion: Fakt, Fiktion und Mode. IWT Paper 15. Accessed 30 November 2009.
  55. Whitley, R. (2000). The Intellectual and Social Organisation of the Sciences. 2nd ed. Oxford: Oxford University Press.Google Scholar
  56. Whitman, J. (2007). The Governance of Nanotechnology. Science and Public Policy, 34(4), 273–283.CrossRefGoogle Scholar
  57. Ziman, J. (1996). “Postacademic Science”: Constructing Knowledge with Networks and Norms. Science Studies, 9(1), 67–80.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Dorothea Jansen
    • 1
    Email author
  • Regina von Görtz
    • 2
  • Richard Heidler
    • 3
    • 2
  1. 1.German University of Administrative Sciences SpeyerSpeyerGermany
  2. 2.German Research Institute for Public AdministrationSpeyerGermany
  3. 3.University of BambergBambergGermany

Personalised recommendations