Skip to main content

Sampling in Precision Agriculture

  • Chapter
  • First Online:

Abstract

This chapter considers the importance of spatial scale in sampling and investigates various methods by which the variogram can be used to determine an appropriate sampling scheme or interval for grid sampling. When no prior information is available on the scale of variation, and the variable of interest is unlikely to be strongly correlated to available ancillary data, a nested survey and analysis provides a first approximation to the variogram and the approximate spatial scale. If the variable of interest appears related to ancillary data such as aerial photographs or elevation, variograms of these data can provide an indication of the likely scale of variation in the soil or crop. Existing variograms of soil or crop properties can be used to determine how many cores of soil or samples from plants should be taken to form a composite (bulked) sample to reduce the local noise. Such variograms can also be used with the kriging equations to determine a grid sampling interval with a specific tolerable error, or an interval of less than half the variogram range can be used to ensure a spatially dependent sample. Finally, if the scale of variation is large in relation to the field size, a variogram estimated by residual maximum likelihood (REML) or standardized variograms from ancillary data can be used to krige data from a small, but spatially dependent sample. Each of the methods investigated is illustrated with a case study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Blackmore, S. (1994). Precision farming: An introduction.Outlook on Agriculture,4, 275–280.

    Google Scholar 

  • Bourgault, G., & Marcotte, D. (1991). Multivariable variogram and its application to the linear model of coregionalization.Mathematical Geology,23, 899–928.

    Article  Google Scholar 

  • Burgess, T. M., & Webster, R. (1984). Sampling and bulking strategies for estimating soil properties in small regions.Journal of Soil Science,35, 127–140.

    Article  Google Scholar 

  • Frogbrook, Z. L. (2000).Geostatistics as an aid to soil management for precision agriculture. Unpublished PhD thesis, University of Reading, Reading, England.

    Google Scholar 

  • Godwin, R. J., & Miller, P. C. H. (2003). A review of the technologies for mapping within-field variability.Biosystems Engineering,84, 393–407.

    Article  Google Scholar 

  • Gower, J. C. (1962). Variance component estimation for unbalanced hierarchical classification.Biometrics,18, 168–182.

    Article  Google Scholar 

  • Journel, A. G., & Huijbregts, C. J. (1978).Mining geostatistics. London: Academic.

    Google Scholar 

  • Kerry, R., & Oliver, M. A. (2007). Sampling requirements for variograms of soil properties computed by the method of moments and residual maximum likelihood.Geoderma,140, 383–396.

    Article  Google Scholar 

  • Kerry, R., & Oliver, M. A. (2008). Determining nugget:sill ratios of standardized variograms from aerial photographs to krige sparse soil data.Precision Agriculture,9, 33–56.

    Article  Google Scholar 

  • Kerry, R., Ingram, B. R., Goovaerts, P., & Oliver, M. A. (2008). How many samples are required to estimate a reliable REML variogram? In J. M. Ortiz, & X. Emery (Eds.),Geostats 2008.Proceedings of the Eighth International Geostatistics Congress (pp. 1155–1160). Santiago, Chile: Gecamin Ltd.

    Google Scholar 

  • Lark, R. M. (2000). Estimating variograms of soil properties by the method-of- moments and maximum likelihood.European Journal of Soil Science,51, 717–728.

    Article  Google Scholar 

  • McBratney, A. B., & Webster, R. (1981). The design of optimal sampling schemes for local estimation and mapping of regionalized variables II. Program and examples.Computers & Geosciences,7, 335–365.

    Google Scholar 

  • McBratney, A. B., Webster, R., & Burgess, T. M. (1981). The design of optimal sampling schemes for local estimation and mapping of regionalized variables. I. Theory and method.Computers & Geosciences,7, 331–334.

    Google Scholar 

  • MAFF. (1986).The analysis of agricultural materials (3rd ed.). Reference Book 427. London: Her Majesty’s Stationery Office.

    Google Scholar 

  • McKenzie, N. J., Grundy, M. J., Webster, R., & Ringrose-Voase, A. J. (Eds.) (2008).Guidelines for surveying soil and land resources (2nd ed.). Collingwood, Australia: CSIRO Publishing.

    Google Scholar 

  • Matheron, G. (1965).Les variables régionalisées et leur estimation. Paris: Masson et Cie.

    Google Scholar 

  • Miesch, A. T. (1975). Variograms and variance components in geochemistry and ore evaluation.Geological Society of America Memoir,142, 333–340.

    Google Scholar 

  • Oliver, M. A., & Badr, I. (1995). Determining the spatial scale of variation in soil radon concentration.Mathematical Geology,27, 893–922.

    Article  CAS  Google Scholar 

  • Oliver, M. A., & Frogbrook, Z. L. (1998).Sampling to estimate soil nutrients for precision agriculture. York, UK: The International Fertiliser Society.

    Google Scholar 

  • Oliver, M. A., Frogbrook, Z. L., Webster, R., & Dawson, C. J. (1997). A rational strategy for determining the number of cores for bulked sampling of soil. In J. V. Stafford (Ed.),Precision agriculture ‘97. Volume I, spatial variability in soil and crop (pp. 155–162). Oxford: BIOS Scientific Publishers.

    Google Scholar 

  • Oliver, M. A., & Webster, R. (1986). Combining nested and linear sampling for determining the scale and form of spatial variation of regionalized variables.Geographical Analysis,18, 227–242.

    Article  Google Scholar 

  • Oliver, M. A., & Webster, R. (1987). The elucidation of soil pattern in the Wyre Forest of the West Midlands, England. II. Spatial distribution.Journal of Soil Science,38, 293–307.

    Google Scholar 

  • Pardo-Igúzquiza, E. (1998a). Maximum likelihood estimation of spatial covariance parameters.Mathematical Geology,30, 95–107.

    Article  Google Scholar 

  • Pardo-Igúzquiza, E. (1998b). MLREML4: A program for the inference of the power variogram model by maximum likelihood and restricted maximum likelihood.Computers & Geosciences,24, 537–543.

    Article  Google Scholar 

  • Patterson, H. D., & Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal.Biometrika,58, 545–209.

    Article  Google Scholar 

  • Payne, R. W. (2008).The guide to GenStat for GenStat release 10: Part 2, statistics. Hemel Hempstead, UK: VSN International.

    Google Scholar 

  • Pettitt, A. N., & McBratney, A. B. (1993). Sampling designs for estimating variance components.Applied Statistics,42, 185–209.

    Article  Google Scholar 

  • Robert, P. C., Rust, R. H., & Larson, W. E. (Eds.) (1995).Site-specific management for agricultural systems. Proceedings of the 2nd International Conference. Madsion, WI: Agronomy Society of America, Crop Science Society of America, Soil Science Society of America.

    Google Scholar 

  • Robert, P. C., Rust, R. H., & Larson, W. E. (Eds.) (1996).Precision agriculture, Proceedings of the Third International Conference on Precision Agriculture. Madsion, WI: Agronomy Society of America, Crop Science Society of America, Soil Science Society of America.

    Google Scholar 

  • Schueller, J. K. (1997). Technology for precision agriculture. In J. V. Stafford (Ed.),Precision agriculture’97. Volume I, spatial variability in soil and crop (pp. 19–33). Oxford, UK: BIOS Scientific Publishers.

    Google Scholar 

  • Stafford, J. V. (Ed.) (1997).Precision agriculture ‘97. Proceedings of the 1st European Conference on Precision Agriculture, Volumes I and II. Oxford: BIOS Scientific Publications.

    Google Scholar 

  • Stafford, J. V. (Ed.) (1999).Precision agriculture ‘99. Proceedings of the 2nd European Conference on Precision Agriculture, Volumes I and II. Sheffield, UK: Sheffield Academic Press.

    Google Scholar 

  • Viscarra-Rossel, R. A., & McBratney, A. B. (1998). Soil chemical analytical accuracy and costs: Implications from precision agriculture.Australian Journal of Experimental Agriculture,38, 765–775.

    Article  Google Scholar 

  • Webster, R., & Boag, B. (1992). A geostatistical analysis of cyst nematodes in soil.Journal of Soil Science,43, 583–595.

    Article  Google Scholar 

  • Webster, R., & Oliver, M. A. (1990).Statistical methods in soil and land resource survey. Oxford: Oxford University Press.

    Google Scholar 

  • Webster, R., & Oliver, M. A. (1992). Sample adequately to estimate variograms of soil properties.Journal of Soil Science,43, 177–192.

    Article  Google Scholar 

  • Webster, R., & Oliver, M. A. (2007).Geostatistics for environmental scientists. Chichester: Wiley.

    Book  Google Scholar 

  • Webster, R., Welham, S. J., Potts, J. M., & Oliver, M. A. (2006). Estimating the spatial scales of regionalized variables by nested sampling, hierarchical analysis of variance and residual maximum likelihood.Computers & Geosciences,32, 1320–1333.

    Article  Google Scholar 

  • Whelan, B. M., McBratney, A. B., & Viscarra-Rossel, R. A. (1996). Spatial prediction for precision agriculture. In P. C. Robert, R. H. Rust, & W. E. Larson (Eds.),Precision agriculture (pp. 331–342).Proceedings of the 3rd International Conference. Madison, WI: Agronomy Society of America, Crop Science Society of America, Soil Science Society of America.

    Google Scholar 

  • Willers, J., Jenkins, J. N., McKinion, J. M., Gerard, P., Hood, K. B., Bassie, J. R., & Cauthen, M. D. (2009). Methods of analysis for georeferenced sample counts of tarnished plant bugs in cotton.Precision Agriculture,10, 189–212.

    Article  Google Scholar 

  • Youden, W. J., & Mehlich, A. (1937). Selection of efficient methods for soil sampling.Contributions of the Boyce Thompson Institute for Plant Research,9, 59–70.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kerry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Kerry, R., Oliver, M.A., Frogbrook, Z.L. (2010). Sampling in Precision Agriculture. In: Oliver, M. (eds) Geostatistical Applications for Precision Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9133-8_2

Download citation

Publish with us

Policies and ethics