Application of Geostatistical Simulation in Precision Agriculture

Chapter

Abstract

Geostatistical simulation provides a means to mimic spatial and or temporal variation of processes that are relevant to precision agriculture. Simulation by computer models aids decision making when it is too difficult, time consuming, costly or dangerous to perform real-world experiments. Spatio-temporal processes are often considered as uncertain because it is impossible to make accurate and comprehensive observations. Geostatistical simulation incorporates uncertainty into modelling to obtain a more realistic impression of the variation. This chapter provides a short introduction to the background of geostatistical simulation and explains sequential Gaussian simulation in more detail because it is the method most commonly applied. Three case studies demonstrate the application of geostatistical simulation in precision agriculture. They deal with the risk of under- and over-liming because of uncertainty about the accuracy of a pH map, the economic costs of GPS errors and the identification of factors that are most relevant to the accuracy of mapping.

Keywords

Sequential Gaussian simulation Stochastic modelling Conditional simulation Unconditional simulation Scenarios Spatio-temporal variability Smoothing Positional error Error propagation Error model Prediction error Uncertainty Risk assessment 

References

  1. Adamchuk, V. I., Lund, E. D., Reed, T. M., & Ferguson, R. B. (2007). Evaluation of an on-the-go technology for soil pH mapping. Precision Agriculture, 8, 139–149.CrossRefGoogle Scholar
  2. Agnew, D., & Larson, K. (2007). Finding the repeat times of the GPS constellation. GPS Solutions, 11, 71–76.CrossRefGoogle Scholar
  3. Amiri-Simkooei, A. R., & Tiberius, C. C. J. M. (2007). Assessing receiver noise using GPS short baseline time series. GPS Solutions, 11, 21–35.CrossRefGoogle Scholar
  4. Bivand, R. S., Pebesma, E. J., & Gómez-Rubio, V. (2008). Applied spatial data analysis with R. New York: Springer.Google Scholar
  5. Bogaert, P., Delincé, J., & Kay, S. (2005). Assessing the error of polygonal area measurements: a general formulation with applications to agriculture. Measurement Science & Technology, 16, 1170–1178.CrossRefGoogle Scholar
  6. Bona, P. (2000). Precision, cross correlation, and time correlation of GPS phase and code observations. GPS Solutions, 4, 3–13.CrossRefGoogle Scholar
  7. Bourgault, G. (1997). Using non-Gaussian distributions in geostatistical simulation. Mathematical Geology, 29, 315–334.CrossRefGoogle Scholar
  8. Bramley, R. G. V. (2009). Lessons from nearly 20 years of precision agriculture research, development, and adoption as a guide to its appropriate application. Crop and Pasture Science, 60, 197–217.CrossRefGoogle Scholar
  9. Chilès, J-P., & Delfiner, P. (1999). Geostatistics. Modeling spatial uncertainty. New York: Wiley.CrossRefGoogle Scholar
  10. de Bruin, S. (2008). Modelling positional uncertainty of line features by accounting for stochastic deviations from straight line segments. Transactions in GIS, 12, 165–177.CrossRefGoogle Scholar
  11. de Bruin, S., Heuvelink, G. B. M., & Brown, J. D. (2008). Propagation of positional measurement errors to agricultural field boundaries and associated costs. Computers and Electronics in Agriculture, 63, 245–256.CrossRefGoogle Scholar
  12. Demougeot-Renard, H., de Fouquet, C., & Renard, P. (2004). Forecasting the number of soil samples required to reduce remediation costs uncertainty. Journal of Environmental Quality, 33, 1694–1702.PubMedCrossRefGoogle Scholar
  13. Deutsch, C. V., & Journel, A. G. (1998). GSLIB: geostatistical software library and user’s guide (2nd ed.). New York: Oxford University Press.Google Scholar
  14. Düngeverordnung (2007). Verordnung über die Anwendung von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln nach den Grundsätzen der guten Fachlichen Praxis beim Düngen (Düngeverordnung – DüV). Neufassung der Düngeverordnung (27.02.2007). Bundesgesetzblatt I, 2007, 221 (Federal act on the use of fertilizers in Germany).Google Scholar
  15. European Space Agency (2005). The EGNOS signal explained, EGNOS fact sheet 12. EGNOS fact sheet http://www.egnos-pro.esa.int/Publications/2005\%20Updated\%20Fact\%20Sheets/fact\_sheet\_12.pdf (accessed August 18 2009).Google Scholar
  16. Faechner, T., Pyrcz, M., & Deutsch, C. V. (1999). Soil remediation decision making in presence of uncertainty in crop yield response. Geoderma, 97, 21–38.CrossRefGoogle Scholar
  17. Fagroud, M., & Van Meirvenne, M. (2002). Accounting for soil spatial autocorrelation in the design of experimental trials. Soil Science Society of America Journal, 66, 1134–1142.CrossRefGoogle Scholar
  18. Farahani, H. J., & Flynn, R. L. (2007). Map quality and zone delineation as affected by width of parallel swaths of mobile agricultural sensors. Biosystems Engineering, 96, 151–159.CrossRefGoogle Scholar
  19. Favis-Mortlock, D. T., Boardman, J., Parsons, A. J., & Lascelles, B. (2000). Emergence and erosion: a model for rill initiation and development. Hydrological Processes, 14, 2173–2205.CrossRefGoogle Scholar
  20. Gebbers, R., Herbst, R., & Wenkel, K.-O. (2009). Sensitivity analysis of soil nutrient mapping. In E. J. van Henten, D. Goense, & C. Lokhorst (Eds.), Precision Agriculture ’09. Proceedings of the 7th European Conference on Precision Agriculture (pp. 513–519). Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
  21. Gentle, J. E. (1989). Random number generation and Monte Carlo methods. New York: Springer.Google Scholar
  22. Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press.Google Scholar
  23. Goovaerts, P. (1999). Geostatistical tools for deriving block-averaged values of environmental attributes. Journal of Geographical Information Sciences, 5, 88–96.Google Scholar
  24. Gotway, C.A., & Rutherford, B. M. (1996). The components of geostatistical simulation. In Mower, H.T. (Ed.), Proceedings of the Second International Symposium on Spatial Accuracy in Natural Resources and Environmental Sciences. Fort Collins: USDA Forest Service. (http://www.osti.gov/bridge/servlets/purl/228463-cOfkGn/webviewable/228463.pdf, accessed September 29 2009).
  25. Gotway, C. A., Ferguson, R. B., Hergert, G. W., & Peterson, T. A. (1996). Comparisons of kriging and inverse-distance methods for mapping soil parameters. Soil Science Society of America Journal, 60, 1237–1247.CrossRefGoogle Scholar
  26. Härdle, W., Müller, M., Sperlich, S., & Werwatz, A. (2004). Nonparametric and semiparametric models. Berlin: Springer.CrossRefGoogle Scholar
  27. Herbst, R., Lamp, J., & Reimer, G. (2001). Inventory and spatial modelling of soils on PA pilot fields. In: G. Grenier, & S. Blackmore (Eds.), Third European Conference on Precision Agriculture (pp. 395–400). Montpellier, France: Agro Montpellier.Google Scholar
  28. Heuvelink, G. B. M. (1998). Error propagation in environmental modelling with GIS. London, UK: Taylor & Francis.Google Scholar
  29. Heuvelink, G. B. M. (1999). Propagation of error in spatial modelling with GIS. In Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (Eds.), Geographical information systems (2nd ed., pp. 207–217). New York: Wiley.Google Scholar
  30. Heuvelink, G. B. M., Brown, J. D., & van Loon, E. E. (2007). A probabilistic framework for representing and simulating uncertain environmental variables. International Journal of Geographical Information Science, 21, 497–513.CrossRefGoogle Scholar
  31. Hoskinson, R. L., Rope, R. C., Blackwood, L. G., Lee, R. D., & Fink, R. K. (2004). The impact of soil sampling errors on variable rate fertilization. In D. J. Mulla (Ed.), Proceedings of 7th International Conference of Precision Agriculture (pp. 1645–1654). Minneapolis, USA: Precision Agriculture Center, University of Minnesota, Department of Soil, Water and Climate.Google Scholar
  32. Kerry, R., & Oliver, M. A. (2003). Variograms of ancillary data to aid sampling for soil surveys. Precision Agriculture, 4, 261–278.CrossRefGoogle Scholar
  33. Kiiveri, H. T. (1997). Assessing, representing and transmitting positional uncertainty in maps. International Journal of Geographical Information Science, 11, 33–52.CrossRefGoogle Scholar
  34. Lantuéjoul, C. (2002). Geostatistical simulation. Models and algorithms. Berlin: Springer.Google Scholar
  35. Lapen, D. R., Topp, G. C., Hayhoe, H. N., Gregorich, E. G., & Curnoe, W. E. (2001). Stochastic simulation of soil strength/compaction and assessment of corn yield risk using threshold probability patterns. Geoderma, 104, 325–343.CrossRefGoogle Scholar
  36. Leuangthong, O., Khan, K. D., & Deutsch, C. V. (2008). Solved problems in geostatistics. Hoboken: Wiley.Google Scholar
  37. MAFF (2000). Fertilizer recommendations for agricultural and horticultural crops. London: The Stationery Office.Google Scholar
  38. Mallarino, A. P., & Wittry, D. J. (2004). Efficacy of grid and zone soil sampling approaches for site-specific assessment of phosphorus, potassium, pH, and organic matter. Precision Agriculture, 5, 131–144.CrossRefGoogle Scholar
  39. MATLAB: The MathWorks, Natick, MA. (http://www.mathworks.com).
  40. Mueller, T. G., Pusuluri, N. B., Mathias, K. K., Cornelius, P. L., & Barnhisel, R. I. (2004). Site-specific soil fertility management: a model for map quality. Soil Science Society of America Journal, 68, 2031–2041.CrossRefGoogle Scholar
  41. Olynik, M., Petovello, M., Cannon, M., & Lachapelle, G. (2002). Temporal impact of selected GPS errors on point positioning. GPS Solutions, 6, 47–57.CrossRefGoogle Scholar
  42. Pebesma, E. J. (2001). Gstat users’ manual. Utrecht, The Netherlands: Department of Physical Geography, Utrecht University. http://www.gstat.org/gstat.pdf. Accessed 28. Jan. 2009.
  43. Pebesma, E. J. (2004). Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30, 683–691.CrossRefGoogle Scholar
  44. Pokrajac, D., Fiez, T., & Obradovic, Z. (2002). A data generator for evaluating spatial issues in precision agriculture. Precision Agriculture, 3, 259–281.CrossRefGoogle Scholar
  45. Praktijkonderzoek Plant en Omgeving (2006). Kwantitatieve informatie akkerbouw en vollegrondsgroenteteelt 2006 (KWIN 2006). Lelystad: Praktijkonderzoek Plant en Omgeving.Google Scholar
  46. R Development Core Team (2008). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. (http://www.r-project.org).
  47. Reichardt, M., Jürgens, C., Klöble, U., Hüter, J., & Moser, K. (2009). Dissemination of precision farming in Germany: acceptance, adoption, obstacles, knowledge transfer and training activities. Precision Agriculture (DOI 10.1007/s11119-009-9112-6, accessed October 1 2009).Google Scholar
  48. Remy, N., Boucher, A., & Wu, J. (2009). Applied geostatistics with SGeMS. New York: Cambridge University Press.CrossRefGoogle Scholar
  49. Shi, W., & Liu, W. (2000). A stochastic process-based model for the positional error of line segments in GIS. International Journal of Geographical Information Science, 14, 51–66.CrossRefGoogle Scholar
  50. Shiflet, A. B., & Shiflet, G. W. (2006). Introduction to computational science. Princeton: Princeton University Press.Google Scholar
  51. SYSTAT: Systat Software Inc., Chicago, IL. (http://www.systat.com).
  52. Van Buren, J., Westerik, A., & Olink, E. J. H. (2003). Kwaliteit TOP10vector – De geometrische kwaliteit van het bestand TOP10vector van de Topografische Dienst. Kadaster – Concernstaf Vastgoedinformatie en Geodesie: 12.Google Scholar
  53. Vann, J., Bertoli, O., & Jackson, S. (2002). An overview of geostatistical simulation for quantifying risk. In S. M. Searston, & R. J. Warner (Eds.), Quantifiying risk and error. Geostatistical Association of Australasia Symposium. (http://www.qgeoscience.com/images/downloads/vann_bertoli_jackson_simulation_for_risk_distribution.pdf, accessed September 29 2009).
  54. VDLUFA (1996). Kalium-Düngung nach Bodenuntersuchung und Pflanzenbedarf. Richtwerte für die Gehaltsklasse C. Darmstadt, Germany: VDLUFA-Verlag (Potassium fertilization based on soil analysis and crop requirements. Guidelines to maintain optimum soil index).Google Scholar
  55. VDLUFA (2000a). Bestimmung des Kalkbedarfs von Acker- und Grünlandböden. Darmstadt: Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA). (Determination of lime needs for arable and grassland soils) (http://www.vdlufa.de/joomla/Dokumente/Standpunkte/0-9-kalk.pdf, accessed August 18 2009).
  56. VDLUFA (2000b). Bestimmung des Kalkbedarfs von Acker- und Grünlandböden. Appendix. Richtwerte für das Rahmenschema zur Kalkbedarfsermittlung in Deutschland. Darmstadt: Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA) (Recommendation tables for lime) (http://www.vdlufa.de/joomla/Dokumente/Standpunkte/0-9-kalkanl.pdf, accessed 18.08.2009).
  57. Wang, J., Satirapod, C., & Rizos, C. (2002). Stochastic assessment of GPS carrier phase measurements for precise static relative positioning. Journal of Geodesy, 76, 95–104.CrossRefGoogle Scholar
  58. Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists (2nd ed.). Chichester: Wiley.CrossRefGoogle Scholar
  59. Zanolin, A., de Fouquet, C., Granier, J., Ruelle, P., & Nicoullaude, B. (2007). Geostatistical simulation of the spatial variability of an irrigated maize farm plot. Comptes Rendus Geosciences, 339, 430–440.CrossRefGoogle Scholar
  60. Zhang, J., & Kirby, R. P. (2000). A geostatistical approach to modelling positional errors in vector data. Transactions in GIS, 4, 145–159.CrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  1. 1.Department of Engineering for Crop ProductionLeibniz-Institute for Agricultural EngineeringPotsdamGermany
  2. 2.Laboratory of Geo-Information Science and Remote SensingWageningen UniversityWageningenThe Netherlands

Personalised recommendations