Advertisement

Cumulative Effects of Rapid Land-Cover and Land-Use Changes on the Yamal Peninsula, Russia

  • Donald A. Walker
  • Bruce C. Forbes
  • Marina O. Leibman
  • Howard E. Epstein
  • Uma S. Bhatt
  • Josefino C. Comiso
  • Dmitri S. Drozdov
  • Anatoly A. Gubarkov
  • Gensuo J. Jia
  • Elina Kaarlejärvi
  • Jed O. Kaplan
  • Artem V. Khomutov
  • Gary P. Kofinas
  • Timo Kumpula
  • Patrick Kuss
  • Natalia G. Moskalenko
  • Nina A. Meschtyb
  • Anu Pajunen
  • Martha K. Raynolds
  • Vladimir E. Romanovsky
  • Florian Stammler
  • Qin Yu
Chapter

Abstract

The Yamal Peninsula in northwest Siberia is undergoing some of the most rapid land-cover and land-use changes in the Arctic due to a combination of gas development, reindeer herding, and climate change. Unusual geological conditions (nutrient-poor sands, massive ground ice and extensive landslides) exacerbate the impacts. These changes will likely increase markedly as transportation corridors are built to transport the gas to market. Understanding the nature, extent, causes and consequences (i.e., the cumulative effects) of the past and ongoing rapid changes on the Yamal is important for effective, long-term decision-making and planning. The cumulative effects to vegetation are the focus of this chapter because the plants are a critical component of the Yamal landscape that support the indigenous Nenets people and their reindeer and also protect the underlying ice-rich permafrost from melting. We are using a combination of ground-based studies (a transect of five locations across the Yamal), remote-sensing studies, and analyses of Nenets land-use activities to develop vegetation-change models that can be used to help anticipate future states of the tundra and how those changes might affect traditional reindeer herding practices and the thermal state of the permafrost. This chapter provides an overview of the approach, some early results, and recommendations for expanding the concept of cumulative-effects analysis to include examining the simultaneous and interactive effects of multiple drivers of change.

Keywords

Normalize Difference Vegetation Index Advanced Very High Resolution Radiometer Advanced Very High Resolution Radiometer Yamal Peninsula High Normalize Difference Vegetation Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. ACIA (2004) Impacts of a warming arctic: arctic climate impact assessment. Cambridge University Press, Cambridge, 144pGoogle Scholar
  2. Bartsch A, Kumpula T, Forbes BC, Stammler F (2010) Detection of snow surface thawing and refreezing in the Eurasian Arctic with QuikSCAT: implications for reindeer herding. Ecol Appl (in press)Google Scholar
  3. Beanlands GE, Erckmann WJ, Orians GH, O’Riordan J, Policansky D, Sadar MH, Sadler B (1986) Cumulative environmental effects: a binational perspective. Canadian Environmental Assessment Research Council/US National Research Council, Ottawa and Washington DCGoogle Scholar
  4. Bhatt US, Walker DA, Raynolds M, Comiso J (2007) The relationship between sea ice variability and arctic tundra on the pan-Arctic, regional, and site scales. Eos, Transact Am Geophys Union 88(52), Fall Meet. Suppl. Abstract U41C-0612Google Scholar
  5. Bhatt US, Walker DA, Raynolds MK, Comiso J (2008) Circumpolar and regional analysis of the relationship between sea-ice variability, summer land-surface temperatures, Arctic tundra greenness and large-scale climate drivers. Talk given at the LCLUC science team meeting, NASA carbon cycle and ecosystems joint science workshop, Adelphi, 1–2 May 2008, Abstract 363. http://cce.nasa.gov/cgi-bin/meeting_2008/mtg2008_ab_search.pl
  6. Bhatt US, Walker DA, Raynolds MK, Comiso JC, Epstein HE, Jia GJ, Gens R, Pinzon JE, Tucker CJ, Tweedie CE, Webber PJ (2010) Circumpolar Arctic tundra vegetation change is linked to sea-ice decline. Earth Interactions 14. doi: 10.1175/2010EI1315.1171Google Scholar
  7. CEQ (1978) National Environmental Policy Act: implementation of procedural provisions; final regulations. Federal Register, 559900Google Scholar
  8. Comiso J (1999) Bootstrap sea ice concentrations for NIMBUS-7SMMR and DMSP SSM/I, June to September 2001. National Snow and Ice Data Center, Digital Media, BoulderGoogle Scholar
  9. Comiso JC (2000) Variability and trends in Antarctic surface temperatures from in situ and satellite infrared. J Climate 13:1674CrossRefGoogle Scholar
  10. Comiso JC (2003) Warming trends in the Arctic from clear sky satellite observations. J Climate 16:3498–3510CrossRefGoogle Scholar
  11. Comiso JC (2006) Arctic warming signals from satellite observations. Weather 61:70–76CrossRefGoogle Scholar
  12. Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35(L01703). doi:01710.01029/02007GL031972Google Scholar
  13. Drozdov DS, Rivkin FM, Rachold V, Malkova GVA, Ivanova NV, Chehina IV, Koreisha MM, Korostelev YV, Melnikov ES (2005) Electronic atlas of the Russian Arctic coastal zone. Geo-Marine Lett 25:81–88CrossRefGoogle Scholar
  14. Dubikov GI (2002) Composition and cryogenic construction of the frozen rocks of West Siberia. GEOS Publisher, Moscow, 246 p (in Russian)Google Scholar
  15. Edlund S (1990) Bioclimate zones in the Canadian Archipelago. In: Harrington CR (ed) Canada’s missing dimension: science and history in the Canadian Arctic islands. Canadian Museum of Nature, Ottawa, pp 421–441Google Scholar
  16. Epstein HE, Walker MD, Chapin FS III, Starfield AM (2000) A transient, nutrient-based model of arctic plant community response to climate warming. Ecol Appl 10:824–841CrossRefGoogle Scholar
  17. Epstein HE, Walker DA, Raynolds MK, Jia GJ, Kelley AM (2008) Phytomass patterns across a temperature gradient of the North American arctic tundra. J Geophys Res-Biogeosci, 113:G03S02CrossRefGoogle Scholar
  18. Epstein HE, Yu Q, Kaplan JO, Lischke H (2007) Simulating future changes in arctic and subarctic vegetation. Comput Sci Eng 9(4):12–23CrossRefGoogle Scholar
  19. Forbes BC (1995) Tundra disturbance studies, III: short-term effects of Aeolian sand and dust, Yamal Region, Northwest Siberia. Environ Conserv 22:335–371CrossRefGoogle Scholar
  20. Forbes BC (1999a) Land use and climate change on the Yamal Peninsula of north-west Siberia: some ecological and socio-economic implications. Polar Res 18:367–373CrossRefGoogle Scholar
  21. Forbes BC (1999b) Reindeer herding and petroleum development on Poluostrov Yamal: sustainable or mutually incompatible uses? Polar Rec 35:317–322CrossRefGoogle Scholar
  22. Forbes BC (2004) Impacts of energy development in polar regions. In: Cleveland CJ (ed) Encyclopedia of energy. Academic Press, San Diego, pp 93–105CrossRefGoogle Scholar
  23. Forbes BC (2008) Equity, vulnerability and resilience in social-ecological systems: a contemporary example from the Russian Arctic. Research in Social Problems and Public Policy 15:203–236Google Scholar
  24. Forbes BC, Ebersole JJ, Strandberg B (2001) Anthropogenic disturbance and patch dynamics in circumpolar arctic ecosystems. Conserv Biol 15:954–969CrossRefGoogle Scholar
  25. Forbes BC, Fresco N, Shvidenko A, Danell K, Chapin FS III (2004) Geographic variations in anthropogenic drivers that influence the vulnerability and resilience of social-ecological systems. Ambio 33:377–382Google Scholar
  26. Forbes BC, Macias Fauria M, Zetterberg P (2010) Russian Arctic warming and “greening” are closely tracked by tundra shrub willows. Glob Chang Biol 16:1542–1554Google Scholar
  27. Forbes BC, McKendrick JD (2002) Polar tundra. In: Perrow M, Davy AJ (eds) Handbook of ecological restoration. Cambridge University Press, Cambridge, pp 355–375Google Scholar
  28. Forbes BC, Stammler F (2009) Arctic climate change discourse: the contrasting politics of research agendas in the West and Russia. Polar Research 28:28–42CrossRefGoogle Scholar
  29. Forbes B, Stammler F, Kumpula T, Meschtyb N, Pajunen A, Kaarlejärvi E (2009) High resilience in the Yamal-Nenets social-ecological system, West Siberian Arctic, Russia. Proc Natl Acad Sci 106:22041–22048Google Scholar
  30. Forman SL, Ingólfsson O, Gataullin V, Manley WF, Lokrantz H (1999) Late Quaternary stratigraphy of western Yamal Peninsula, Russia: New constraints on the configuration of the eurasian ice sheet. Geology 27:807–810CrossRefGoogle Scholar
  31. Forman SL, Ingólfsson O, Gataullin V, Manley WF, Lokrantz H (2002) Late Quaternary stratigraphy, glacial limits, and paleoenvironments of the Marresale area, western Yamal Peninsula, Russia. Quat Res 57:355–370CrossRefGoogle Scholar
  32. Gubarkov A (2008) Overview of gas and oil development on the Yamal Peninsula. Yamal land-cover land-use change workshop, Moscow, 28–30 January 2008. http://www.geobotany.uaf.edu/library/ptFiles/gubarkov_2008_yamal.pdf
  33. Hinzman L, Bettez N, Bolton WR, Chapin FS III, Dyurgerov M, Fastie C, Griffith B, Hollister RD, Hope A, Huntington HP, Jensen A, Jia GJ, Jorgenson T, Kane DL, Klein DR, Kofinas G, Lynch AH, Lloyd AH, McGuire AD, Nelson F, Oechel WC, Osterkamp TE, Racine C, Romanovsky VE, Stone R, Stow D, Sturm M, Tweedie CE, Vourlitis G, Walker MD, Walker DA, Webber PJ, Welker JE, Winker K, Yoshikawa K (2005) Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Clim Change 73:251–298CrossRefGoogle Scholar
  34. Holroyd P, Retzer H (2005) A peak into the future: potential landscape impacts of gas development in northern Canada. The Pembina Institute, Drayton Valley, AlbertaGoogle Scholar
  35. Horak GC, Vlachos EC, Cline EW (1983) Fish and wildlife and cumulative impacts: is there a problem? Office of Biological Services, Fish and Wildlife Service, AlbuquerqueGoogle Scholar
  36. Jia GJ, Epstein HE, Walker DA (2003) Greening of arctic Alaska, 1981–2001. Geophys Res Lett 30:2067. doi:2010.1029/2003GL018268CrossRefGoogle Scholar
  37. Kaplan JO, Bigelow NH, Prentice IC, Harrison SP, Bartlein PJ, Christensen TR, Cramer W, Matveyeva NV, McGuire AD, Murray DF, Razzhivin VY, Smith B, Walker DA, Anderson PM, Andreev AA, Brubaker LB, Edwards ME, Lozhkin LV (2003) Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. J Geophys Res 108(D198171). doi:1029/2002DJ002559Google Scholar
  38. Kaplan JO, New M (2006) Arctic climate change with a 2°C global warming: timing, climate patterns and vegetation change. Clim Change 79:213–241CrossRefGoogle Scholar
  39. Kumpula T, Forbes BC, Stammler F (2010) Remote sensing and local knowledge of hydrocarbon exploitation: the case of Bovanenkovo, Yamal, West Siberia. Arctic 63:65–178Google Scholar
  40. Lawrence DM, Slater AG, Tomas RA, Holland MM, Deser C (2008) Accelerated Arctic land warming and permafrost degration during rapid sea ice loss. Geophys Res Lett 35(L11506). doi:11510.11029/12008GL033985Google Scholar
  41. Lee LC, Gosselink JG (1988) Cumulative impacts on wetlands: linking scientific assessments and regulatory alternatives. Environ Manage 12:591–602CrossRefGoogle Scholar
  42. Leibman MO (1996) Results of chemical testing for various types of water and ice, Yamal Peninsula, Russia. Permafr Perigl Process 7:287–296CrossRefGoogle Scholar
  43. Leibman MO, Kizyakov AI (2007) Cryogenic landslides of the Yamal and Yugorsky Peninsulas. Earth Cryosphere Institute SB RAS Press, Moscow, p 206 (In Russian).Google Scholar
  44. Mathiessen S (2008) Climate adaptation in relation to reindeer herding. Talk given at the LCLUC Sience Team Meeting, NASA Carbon Cycle and Ecosystems Joint Science Workshop, Adelphi, 1–2 May 2008Google Scholar
  45. Melnikov ES (1998) Uniting basis for creation of ecological maps for the Russian cryolithozone. Procedings of the 7th International Conference on Permafrost, Yellowknife, 719–722Google Scholar
  46. Melnikov ES, Minkin MA (1998) About strategy of development of electronic geoinformation systems (GIS) and databases in geocryology. Earth Cryosphere II:70–76 (in Russian)Google Scholar
  47. Minkin MA, Melnikov ES, Leibman MO (2001) Russian national geocryological database and a strategy for its development. In: Raepe R, Melnikov V (eds) Permafrost response on economic development, environmental security and natural resources. Kluwer Academic Publishers, NetherlandsGoogle Scholar
  48. Nghiem SV, Rigor IG, Perovich DK, Clemente-Colón P, Weatherly JW (2007) Rapid reduction of Arctic perennial sea ice. Geophys Res Lett 34. doi:10.1029/2007GL031138Google Scholar
  49. NRC (2003) Cumulative environmental effecs of oil and gas activities on Alaska’s North Slope. National Academies Press, Washington DCGoogle Scholar
  50. Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134CrossRefGoogle Scholar
  51. Rannie WF (1986) Summer air temperature and number of vascular species in arctic Canada. Arctic 39:133–137Google Scholar
  52. Raynolds MK, Comiso JC, Walker DA, Verbyla D (2008a) Relationship between satellite-derived land surface temperatures, arctic vegetation types, and NDVI. Rem Sens Environ 112:1884–1894CrossRefGoogle Scholar
  53. Raynolds MK, Walker DA, Comiso JC (2008b) Spatial patterns of land-surface temperature and NDVI, and their relation to vegetation distribution on the Yamal Peninsula, Russia. Poster presented at the Carbon Cycle and Ecosystems Joint Science Workshop, Adelphi, 1–2 May 2008. Abstract 365. http://cce.nasa.gov/cgi-bin/meeting_2008/mtg2008_ab_search.pl
  54. Raynolds MK, Walker DA, Maier HA (2006) NDVI patterns and phytomass distribution in the circumpolar Arctic. Rem Sens Environ 102:271–281CrossRefGoogle Scholar
  55. Romanovsky VE, Osterkamp TE (2001) Permafrost: changes and impacts. In: Paepe R, Melnikov V, Overloop EV, Gorokhov VD (eds) Permafrost response on economic development. Environmental security and natural resources. Kluwer Academic Publisher, Dordrecht, pp 297–315Google Scholar
  56. Stammler F (1998) Wo Unser Erdgas Herkommt. Pogrom 201:33–35Google Scholar
  57. Stammler F (2005) Reindeer Nomads meet the market: culture, property and globalisation at the end of the land. Muenster, Litverlag (Halle Studies in the Anthropology of Eurasia) 6, 320Google Scholar
  58. Stammler F, Forbes BC, and Participants of the Symposium on Oil and Gas Development in NAO and YNAO (2009) “Ilebts” declaration on coexistence of oil and gas activities and indigenous communities on Nenets and other territories in the Russian North, Arctic Centre, University of Lapland. Rovaniemi, 10–11 December 2007. http://www.arcticcentre.org/declaration
  59. Stammler F, Wilson E (2006) Dialogue for development: an exploration of relations between oil and gas companies, communities and the state. Sibirica 5:1–42CrossRefGoogle Scholar
  60. Starobin P (2008) Send me to Siberia. Natl Geogr 213:60–85Google Scholar
  61. Streletskaya ID, Leibman MO (2003) Cryogeochemical model of tabular ground ice and cryopegs formation at central Yamal, Russia. Proceedings of the International Conference on Permafrost, Zurich. A.A. Balkema Publishers, Netherlands, 1111–1115Google Scholar
  62. Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: Faster than forecast. Geophys Res Lett 34(L09501). doi:10.1029/2007GL029703Google Scholar
  63. Tape K, Sturm M, Racine C (2006) The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob Chang Biol 12:686–702CrossRefGoogle Scholar
  64. Treshnikov AF (1985) Atlas of the Arctic. Administrator of Geodesy and Cartography of the Soviet Ministry, Moscow (in Russian)Google Scholar
  65. Tucker CJ, Pinzon JE, Brown ME, Slayback D, Pak EW, Mahoney R, Vermote E, El Saleous N (2005) An extended AVHRR 8-km NDVI data set compatible with MODIS and SPOT vegetation NDVI data. Int J Rem Sens 26:4485–4598CrossRefGoogle Scholar
  66. Ukraintseva NG (1997) Willows tundra of Yamal as the indicator of salinity of superficial sediments. Results of basic research of Earth cryosphere in Arctic and Subarctic. Nauka Publisher, Novosibirsk, pp 182–187Google Scholar
  67. Ukraintseva NG (1998) Distribution of shrub tundra on Yamal. Biogeography. RGO Publisher, Moscow, pp 46–53Google Scholar
  68. Ukraintseva NG, Leibman MO (2000) Productivity of willow-shrub tundra in connection with landslide activity. Proceedings of the 30th arctic workshop programme and abstracts, INSTAAR, University of Colorado, Boulder, 16–18 Mar 2000, 150–152. http://instaar.colorado.edu/meetings/AW2000/AW30_Pro_Abstr.pdf
  69. Ukraintseva NG, Leibman MO (2007) The effect of cryogenic landslides (active-layer detachments) on fertility of tundra soils on Yamal peninsula, Russia. Proceedings of the 1st North American landslide conference, Omnipress, VailGoogle Scholar
  70. Ukraintseva NG, Leibman MO, Streletskaya ID (2000) Peculiarities of landslide process in saline frozen deposits of central Yamal, Russia. In: Bromhead E, Dixon N, Ibsen LL (eds) Landslides. Proceedings of the 8th International Symposium on Landslides 3, Thomas Telford, London, 1495–1500Google Scholar
  71. Ukraintseva NG, Leibman MO, Streletskaya ID, Yermokhina KA, Smetanin NN (2002) Monitoring of the landslide on saline frozen deposits in typical tundra subzone (Yamal, Bovanenkovo Gas-field area), Ecology of northern territories of Russia. Problems, prediction of situation, ways of development, solutions, vol 1, Arkhangelsk, 832–837Google Scholar
  72. Ukraintseva NG, Streletskaya ID, Ermokhina KA, Yermakov SY (2003) Geochemical properties of plant-soil-permafrost system at landslide slopes, Yamal, Russia. Proceedings of the international conference on permafrost, Zurich, A.A.Balkema Publishers, Netherlands, 1149–1154Google Scholar
  73. UNEP (2001) GLOBIO Global methodology for mapping human impacts on the biosphere: the Arctic 2050 scenario and global application. United Nations Environment ProgrammeGoogle Scholar
  74. Vilchek GE (1997) Arctic ecosystem stability and disturbance. In: Crawford RMM (ed) Disturbance and recovery in Arctic lands: an ecological perspective. Kluwer Academic Publishers, Dordrecht, pp 179–189Google Scholar
  75. Walker DA (1997) Arctic Alaskan vegetation disturbance and recovery: a hierarchic approach to the issue of cumulative impacts. In: Crawford RMM (ed) Disturbance and recovery in Arctic lands: an ecological perspective. Kluwer Academic Publishers Publishers, Dordrecht, pp 457–479Google Scholar
  76. Walker DA, Epstein HE, Leibman ME, Moskalenko NG, Kuss JP, Matyshak GV, Kaärlejarvi E, Barbour E (2008a) Data Report of the 2007 expedition to Nadym, Laborovaya and Vaskiny Dachi, Yamal Peninsula region, Russia. NASA Project No. NNG6GE00A, Alaska Geobotany Center, Institute of Arctic Biology, University of Alaska, Fairbanks. http://www.geobotany.uaf.edu/yamal/documents/yamal_2007_dr080211
  77. Walker DA, Epstein HE, Romanovsky VE, Ping CL, Michaelson GJ, Daanen RP, Shur Y, Peterson RA, Krantz WB, Raynolds MK, Gould WA, Gonzalez G, Nickolsky DJ, Vonlanthen CM, Kade AN, Kuss P, Kelley AM, Munger CA, Tarnocai CT, Matveyeva NV, Daniëls FJA (2008b) Arctic patterned-ground ecosystems: a synthesis of field studies and models along a North American Arctic Transect. J Geophys Res-Biogeosci 113(G03S01). doi10.1029/2007JG000504Google Scholar
  78. Walker DA, Leibman MO, Epstein HE, Forbes BC, Bhatt US, Raynolds MK, Comiso JC, Gubarkov AA, Khomutov AV, Jia GJ, Kaarlejärvi E, Kaplan JO, Kumpula T, Kuss P, Matyshak G, Moskalenko NG, Orekhov P, Romanovsky VE, Ukraientseva NK, Yu Q (2009) Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized vegetation index. Environ Res Lett 4:045004. doi:10.1088/1748-9326/4/4/045004CrossRefGoogle Scholar
  79. Walker DA, Raynolds MK, Daniëls FJA, Einarsson E, Elvebakk A, Gould WA, Katenin AE, Kholod SS, Markon CJ, Melnikov ES, Moskalenko NG, Talbot SS, Yurtsev BA (2005) The circumpolar arctic vegetation map. J Veg Sci 16(3):267–282CrossRefGoogle Scholar
  80. Walker DA, Webber PJ, Binnian EF, Everett KR, Lederer ND, Nordstrand EA, Walker MD (1987) Cumulative impacts of oil fields on Northern Alaskan landscapes. Science 238:757–761CrossRefGoogle Scholar
  81. Weller C, Thomson J, Morton P, Aplet G (2002) Fragmenting our lands: the ecological footprint from oil and gas development. The Wilderness Society, SeattleGoogle Scholar
  82. Young SB (1971) The vascular flora of St. Lawrence Island with special reference to floristic zonation in the arctic regions. Contributions from the Gray Herbarium 201:11–115Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Donald A. Walker
    • 1
  • Bruce C. Forbes
    • 2
  • Marina O. Leibman
    • 3
  • Howard E. Epstein
    • 4
  • Uma S. Bhatt
    • 5
  • Josefino C. Comiso
    • 6
  • Dmitri S. Drozdov
    • 2
  • Anatoly A. Gubarkov
    • 7
  • Gensuo J. Jia
    • 8
  • Elina Kaarlejärvi
    • 9
  • Jed O. Kaplan
    • 10
  • Artem V. Khomutov
    • 11
  • Gary P. Kofinas
    • 12
  • Timo Kumpula
    • 13
  • Patrick Kuss
    • 14
  • Natalia G. Moskalenko
    • 15
  • Nina A. Meschtyb
    • 16
  • Anu Pajunen
    • 2
  • Martha K. Raynolds
    • 17
  • Vladimir E. Romanovsky
    • 12
  • Florian Stammler
    • 2
  • Qin Yu
    • 4
  1. 1.Department of Biology and WildlifeInstitute of Arctic Biology, Alaska Geobotany Center, University of Alaska FairbanksFairbanksUSA
  2. 2.Arctic Centre, University of LaplandRovaniemiFinland
  3. 3.Earth Cryosphere InstituteMoscowRussia
  4. 4.Department of Environmental SciencesUniversity of VirginiaCharlottesvilleUSA
  5. 5.Department of Atmospheric Sciences, Geophysical Institute, IARC Room 307University of Alaska FairbanksFairbanksUSA
  6. 6.Cryospheric Sciences BranchNASA Goddard Space Flight CenterGreenbeltUSA
  7. 7.Tyumen State Oil and Gas UniversityTyumenRussia
  8. 8.START Regional Center for Temperate East AsiaChinese Academy of Science, Institute of Atmospheric PhysicsBeijingChina
  9. 9.Ecology and Environmental Sciences, University of UmeåUmeåSweden
  10. 10.EPFL Swiss Federal Institute of TechnologyLausanne, ENAC-ARVE, Ecole Polytechnique Fédérale de Lausanne Station 2LausanneSwitzerland
  11. 11.Tyumen State Oil and Gas UniversityVolodarsky str. 38TyumenRussia
  12. 12.University of Alaska FairbanksFairbanksUSA
  13. 13.Department of Geographical and Historical StudiesUniversity of Eastern FinlandJoensuuFinland
  14. 14.Institute of Plant SciencesUniversity of BernBernSwitzerland
  15. 15.Earth Cryosphere Institute, SB RASMoscowRussia
  16. 16.Department of the Northern StudiesInstitute of Ethnology and Anthropology, Russian Academy of ScienceMoscowRussia
  17. 17.Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksUSA

Personalised recommendations