Interactions Between Land Cover/Use Change and Hydrology

  • Alexander I. Shiklomanov
  • Theodore J. Bohn
  • Dennis P. Lettenmaier
  • Richard B. Lammers
  • Peter Romanov
  • Michael A. Rawlins
  • Jennifer C. Adam


The water cycle is a vital component of the North Eurasian environment and plays a central role in the region’s climate, biology, biogeochemistry and in human interactions with the natural environment. The Northern Eurasian arctic drainage covers more than 2/3 of the pan-arctic land mass. Substantial changes in land cover and land use have occurred over the region in recent decades, as a result of changes in climate, permafrost, and water management, among other factors. These changes are likely to affect large-scale linkages between the regional and global climate system, but the nature of these interactions is not well understood. In this chapter, we analyze changes in the dominant hydrological components and explore the interaction of the terrestrial and atmospheric water cycles, with particular attention to key regional cryospheric processes and linkages between the water and carbon cycles. The monitoring of the water cycle from observational networks and remote sensing along with strategies for improving hydrological change detection are discussed in the context of changes in land cover and land use.


River Discharge Arctic Ocean Snow Depth Advanced Very High Resolution Radiometer Advanced Very High Resolution Radiometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. ACIA (2005) Arctic climate impact assessment scientific report. Cambridge University Press, New York, 1042 pGoogle Scholar
  2. Adam JC, Haddeland I, Su F, Lettenmaier DP (2007) Simulation of reservoir influences on annual and seasonal streamflow changes for the Lena, Yenisei and Ob' Rivers. J Geophys Res 112:D24114. doi:10.1029/2007JD008525CrossRefGoogle Scholar
  3. Adam JC, Lettenmaier DP (2008) Application of new precipitation and reconstructed streamflow products to streamflow trend attribution in Northern Eurasia. J Climate 21(8):1807–1828CrossRefGoogle Scholar
  4. Arendt AA, Echelmeyer KA, Harrison WD, Lingle CS, Valentine VB (2002) Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science 297:382–386. doi:10.1126/science.1072497CrossRefGoogle Scholar
  5. Armstrong RL, Brodzik MJ (2001) Recent Northern Hemisphere snow extent: a comparison of data derived from visible and microwave satellite sensors. Geophys Res Lett 28:3673–3676CrossRefGoogle Scholar
  6. Armstrong RL, Brodzik MJ, Savoie M, Knowles K (2003) Enhanced hemispheric-scale snow mapping through the blending of optical and microwave satellite data. EGS-AGU-EUG Joint Assembly, Nice, 6–11 Apr 2003, abstract 12824Google Scholar
  7. Baird AJ, Beckwith CW, Waldron S, Waddington JM (2004) Ebullition of methane-containing gas bubbles from near-surface Sphagnum peat. Geophys Res Lett 31(21):L21505. doi:10.1029/2004GL21157CrossRefGoogle Scholar
  8. Barry RG (2006) The status of research on glaciers and global glacier recession: a review. Prog Phys Geog 30(3):285–306. doi:10.1191/0309133306CrossRefGoogle Scholar
  9. Bartlett KB, Harriss RC (1993) Review and assessment of methane emissions from wetlands. Chemosphere 26:261–320CrossRefGoogle Scholar
  10. Bellamy PH, Loveland PJ, Bradley RI, Lark RM, Kirk GJD (2005) Carbon losses from all soils across England and Wales 1978–2003. Nature 437. doi:10.1038/nature04038Google Scholar
  11. Berezovskaya S, Yang D, Kane DL (2004) Compatability analysis of precipitation and runoff trends over the large Siberian watersheds. Geophys Res Lett 31:L21502. doi:10.1029/2004GL021277CrossRefGoogle Scholar
  12. Billett MF, Palmer SM, Hope D, Deacon C, Storeton-West R, Hargreaves KJ, Flechard C, Fowler D (2004) Linking land-atmosphere carbon fluxes in a lowland peatland system. Global Biogeochem Cycles 18(1). doi:10.1029/2003GB002058Google Scholar
  13. Birkett CM (1998) Contribution of the TOPEX NASA radar altimeter to the global monitoring of large rivers and wetlands. Water Resour Res 34:1223–1239CrossRefGoogle Scholar
  14. Bohn TJ, Lettenmaier DP, Sathulur K, Bowling LC, Podest E, McDonald KC, Friborg T (2007) Methane emissions from Western Siberian wetlands: heterogeneity and sensitivity to climate change. Environ Res Lett 2. doi:10.1088/1748-9326/2/4/045015Google Scholar
  15. Bowling LC, Lettenmaier DP, Nijssen B, Polcher J, Koster RD, Lohmann D (2003) Simulation of high latitude hydrological processes in the Torne-Kalix basin: PILPS Phase 2(e) 3: equivalent model representation and sensitivity experiment. J Glob Planet Change 38(1–2):55–71CrossRefGoogle Scholar
  16. Braithwaite RJ (2005) Mass balance characteristics of arctic glaciers. Ann Geol 42:225–229Google Scholar
  17. Broecker WS (1997) Thermohaline circulation, the Achilles Heel of our climate system: will man-made CO2 upset the current balance? Science 278:1582–1588CrossRefGoogle Scholar
  18. Brown RD (1997) Historical variability in Northern Hemisphere spring snow covered area. Ann Glaciol 25:340–346Google Scholar
  19. Brown RD (2000) Northern Hemisphere snow cover variability and change, 1915–97. J Climate 13:2339–2355CrossRefGoogle Scholar
  20. Brown J, Ferrians OJJ, Heginbottom JA, Melnikov ES (1997) International Permafrost Association Circum-Arctic Map of Permafrost and Ground Ice Conditions, Scale 1:10,000,000. U.S. Geological SurveyGoogle Scholar
  21. Brown J, Romanovsky VE (2008) Report from the International Permafrost Association: state of permafrost in the first decade of the 21st century. Permafrost Periglac Process 19(2):255–260CrossRefGoogle Scholar
  22. Bubier JL, Moore TR, Bellisario L, Comer NT, Crill PM (1995) Ecological controls on methane emissions from a northern peatland complex in the zone of discontinuous permafrost, Manitoba, Canada. Global Biogeochem Cycles 9(4):455–470CrossRefGoogle Scholar
  23. Christensen TR, Ekberg A, Ström L, Mastepanov M, Panikov NS, Öquist M, Svensson BH, Nykänen H, Martikainen PJ, Oskarsson H (2003) Factors controlling large-scale variations in methane emissions from wetlands. Geophys Res Lett 30(7). doi:10.1029/2002GL016848Google Scholar
  24. Cole JJ, Caraco NF, Kling GW, Kratz TK (1994) Carbon-dioxide supersaturation in the surface waters of lakes. Science 265(5178):1568–1570CrossRefGoogle Scholar
  25. Crill PM (1991) Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil. Global Biogeochem Cycles 5:319–334CrossRefGoogle Scholar
  26. Derksen CA, Walker A, LeDrew E, Goodison B (2003) Combining SMMR and SMM/I data for time series analysis of central North American snow water equivalent. J Hydrometeorol 4:304–316CrossRefGoogle Scholar
  27. Dery SJ, Brown RD (2007) Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback. Geophys Res Lett 34:l22504. doi:10.1029/2007gl031474CrossRefGoogle Scholar
  28. Dery SJ, Wood EF (2006) Analysis of snow in the 20th and the 21st century Geophysical Fluid Dynamics Laboratory coupled climate model simulations. J Geophys Res 111:D19113. doi:10.1029/2005JD006920CrossRefGoogle Scholar
  29. Dise NB, Gorham E, Verry S (1993) Environmental factors controlling methane emissions from peatlands in Northern Minnesota. J Geophys Res 98(D6):10583–10594CrossRefGoogle Scholar
  30. Dowdeswell JA, Hagen JO, Björnsson H, Glazovsky AF, Harrison WD, Holmlund P, Jania J, Koerner RM, Lefauconnier B, Ommanney CSL, Thomas RH (1997) The mass balance of circum-Arctic glaciers and recent climate change. Quat Res 48:1–14CrossRefGoogle Scholar
  31. Dozier J, Painter TH (2004) Multispectral and hyperspectral remote sensing of alpine snow properties. Ann Rev Earth Planet Sci 32:465–494CrossRefGoogle Scholar
  32. Drozdov OA, AS Grigorieva (1963) Water cycle in the atmosphere. Leningrad, Gidrometeoizdat, 156 p (in Russian)Google Scholar
  33. Dyurgerov MB, Carter CL (2004) Observational evidence of increases in freshwater inflow to the Arctic Ocean. Arct Antarct Alp Res 36(1):117–122CrossRefGoogle Scholar
  34. Dyurgerov MB, Meier MF (2000) Twentieth century climate change: evidence from small glaciers. Proc Natl Acad Sci USA 97(4):1406–1411CrossRefGoogle Scholar
  35. Fallot JM, Barry RG, Hoogstrate D (1997) Variations of mean cold season temperature precipitation and snow depths during the last 100 years in the former Soviet Union. Hydrol Sci J 42:301–327CrossRefGoogle Scholar
  36. Foster JL, Hall DK, Eylander JB, Riggs GA, Kim EJ, Tedesco M, Nghiem SV, Kelly REJ, Choudhury BJ (2008) A new blended global snow product using visible, passive microwave, and scatterometer satellite data. Proceedings of the 88th annual meeting of American meteorological society, 20–24 Jan 2008, New Orleans.
  37. Foster JL, Sun C, Walker JP, Kelly R, Chang A, Dong J, Powell H (2005) Quantifying the uncertainty in passive microwave snow water equivalent observations. Rem Sens Environ 94:187–203. doi:10.1016/j.rse.2004.09.012CrossRefGoogle Scholar
  38. Frauenfeld OW, Zhang T, Barry RG, Gilichinsky D (2004) Interdecadal changes in seasonal freeze and thaw depths in Russia. J Geophys Res 109:D5101. doi:10.1029/2003JD004245CrossRefGoogle Scholar
  39. Frauenfeld OW, Zhang TJ, McCreight JL (2007) Northern hemisphere freezing/thawing index variations over the twentieth century. Int J Climatol 27:47–63. doi:10.1002/joc.1372CrossRefGoogle Scholar
  40. Frey KE, Smith LC (2005) Amplified carbon release from vast West Siberian peatlands by 2100. Geophys Res Lett 32:L09401. doi:10.1029/2004GL022025CrossRefGoogle Scholar
  41. Friborg T, Soegaard H, Christensen TR, Lloyd CR, Panikov NS (2003) Siberian wetlands: where a sink is a source. Geophys Res Lett 30(21). doi:10.1029/2003GL017797Google Scholar
  42. Frolking S, Crill P (1994) Climate controls on temporal variability of methane flux from a poor fen in southeastern New Hampshire: measurement and modeling. Glob Biogeochem Cycles 8(4):385–397CrossRefGoogle Scholar
  43. Gedney N, Cox PM, Huntingford C (2004) Climate feedback from wetland methane emissions. Geophys Res Lett 31:L20503. doi:10.1029/2004GL020919CrossRefGoogle Scholar
  44. Georgievsky VYu (2002) Changes of the Russian river runoff. Report of the State Hydrological Institute, St. Petersburg, 85 p (in Russian)Google Scholar
  45. Goodison B, Louie P, Yang D (1998) WMO solid precipitation measurement intercomparison, final report. WMO/TD-872, Instruments and observing methods report 67Google Scholar
  46. Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climate warming. Ecol Appl 1(2):182–195CrossRefGoogle Scholar
  47. Grippa M, Mognard NM, Le Toan T, Biancamaria S (2007) Observations of changes in surface water over the western Siberia lowland. Geophys Res Lett 34:L15403. doi:10.1029/2007GL030165CrossRefGoogle Scholar
  48. Grody NC, Basist AN (1996) Global identification of snow cover using SSM/I measurements. Trans Geosci Rem Sens, 34:237–249CrossRefGoogle Scholar
  49. Groisman PYa, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VN (2005) Trends in intense precipitation in the climate record. J Climate 18:1343–1367CrossRefGoogle Scholar
  50. Groisman PYa, Koknaeva VV, Belokrylova TA, Karl TR (1991) Overcoming biases of precipitation measurement: a history of the USSR experience. Bull Am Meteorol Soc 72:1725–1733CrossRefGoogle Scholar
  51. Groisman PYa, Sherstyukov BG, Razuvaev VN, Knight RW, Enloe JG, Stroumentova NS, Whitfield PH, Førland E, Hannsen-Bauer I, Tuomenvirta H, Aleksandersson H, Mscherskaya AV, Karl TR (2007) Potential forest fire danger over Northern Eurasia: changes during the 20th century. Glob Planet Change 56:371–386. doi: 10.1016/j.gloplacha.2006.07.029CrossRefGoogle Scholar
  52. Hall DK, Riggs GA (2007) Accuracy assessment of the MODIS snow products. Hydrol Process, 21:1534–1547CrossRefGoogle Scholar
  53. Hall DK, Riggs G, Salomonson V, DiGirolamo NE, Bayr KJ (2002) MODIS snow cover products. Rem Sens Environ 83:181–194CrossRefGoogle Scholar
  54. Hansen J, Sato Mki, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci USA 103:14288–14293. doi:10.1073/pnas.0606291103CrossRefGoogle Scholar
  55. Hoelzle M, Haeberli W, Dishl M, Peschke W (2003) Secular glacier mass balances derived from cumulative glacier length changes. Glob Planet Change 36:295–306CrossRefGoogle Scholar
  56. Holmes RM, McClelland JW, Raymond PA, Frazer BB, Peterson BJ, Stieglitz M (2008) Lability of DOC transported by Alaskan rivers to the arctic ocean. Geophys Res Lett 35(3). doi:10.1029/2007GL032837Google Scholar
  57. ICOLD (2003) World register of dams, Paris, 340 pGoogle Scholar
  58. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the 4th assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds). Cambridge University Press, Cambridge, 996 pGoogle Scholar
  59. Kelly RE, Chang AT, Tsang L, Foster JL (2003) A prototype AMSR-E global snow area and snow depth algorithm. Trans Geosci Rem Sens 41:230–242CrossRefGoogle Scholar
  60. Kim Y, Hatsushika H, Muskett RR, Yamazaki K (2005) Possible effect of boreal wildfire soot on Arctic sea ice and Alaska glaciers. Atmos Environ 39:3513–3520CrossRefGoogle Scholar
  61. Kling GW, Kipphut GW, Miller MC (1991) Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251:298–301CrossRefGoogle Scholar
  62. Kongoli C, Grody NC, Ferraro RR (2004) Interpretation of AMSU microwave measurements for the retrievals of snow water equivalent and snow depth. J Geophys Res 109:D24111. doi:10.1029/2004JD004836CrossRefGoogle Scholar
  63. Kremenetski KV, Velichko AA, Borisova OK, MacDonald GM, Smith LC, Frey KE, Orlova LA (2003) Peatlands of the Western Siberian lowlands: current knowledge on zonation, carbon content and late quaternary history. Quat Sci Rev 22:703–723CrossRefGoogle Scholar
  64. Lachenbruch AH, Marshall BV (1986) Changing climate: geothermal evidence from permafrost in the Alaskan Arctic. Science 234, 689–696CrossRefGoogle Scholar
  65. Lammers RB, Shiklomanov AI, Vörösmarty CJ, Fekete BM, Peterson BJ (2001), Assessment of contemporary Arctic river runoff based on observational discharge Records. J Geophys Res-Atmos 106(D4):3321–3334CrossRefGoogle Scholar
  66. Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs, and wetlands. J Hydrometeorol 296:1–22CrossRefGoogle Scholar
  67. Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323CrossRefGoogle Scholar
  68. Lugina KM, Groisman PYa, Vinnikov KYa, Koknaeva VV, Speranskaya NA (2006) Monthly surface air temperature time series area-averaged over the 30-degree latitudinal belts of the globe, 1881–2005. In trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge. doi:10.3334/CDIAC/cli.003Google Scholar
  69. Manabe S, Stouffer RJ (1994) Multiple-century response of a coupled ocean-atmosphere model to an increase of atmospheric carbon dioxide. J Climate 7: 5–23CrossRefGoogle Scholar
  70. Matthews E, Fung I (1987) Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Glob Biogeochem Cycles 1(1):61–86CrossRefGoogle Scholar
  71. Maurer E, Rhoads JD, Dubayah RO, Lettenmaier DP (2002) Evaluation of the snow-covered area data product from MODIS. Hydrol Process 17(1):59–71CrossRefGoogle Scholar
  72. McClelland JW, Holmes RM, Peterson BJ, Stieglitz M (2004) Increasing river discharge in the Eurasian Arctic: consideration of dams, permafrost thaw, and fires as potential agents of change. J Geophys Res 109:D18102. doi:10.1029/2004JD004583CrossRefGoogle Scholar
  73. McDonald KC, Kimball JS, Njoku E, Zimmermann R, Zhao M (2004) Variability in springtime thaw in the terrestrial high latitudes: monitoring a major control on the biospheric assimilation of atmospheric CO2 with spaceborne microwave remote sensing. Earth Interact 8(20):1–23CrossRefGoogle Scholar
  74. Meier MF, Dyurgerov MB, Rick UK, O’Neel S, Pfeffer WT, Anderson RS, Anderson SP, Glazovsky AF (2007) Glaciers dominate eustatic sea-level rise in the 21st century. Science 317:1064-1067. doi: 10.1126/science.1142906CrossRefGoogle Scholar
  75. Moore TR, Roulet NT (1993) Methane flux: water table relations in northern wetlands. Geophys Res Lett 20(7):587–590CrossRefGoogle Scholar
  76. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981–1991. Nature 386:698–702CrossRefGoogle Scholar
  77. Nilsson S, Vaganov E, Shvidenko A, Stolbovoi V, Rozhkov V, McCallum I., Jonas M (2003) Carbon budget of vegetation ecosystems of Russia. Doklady Earth Sci 393A(9):1281–1283Google Scholar
  78. Oberman NG, Mazhitova GG (2001) Permafrost dynamics in the northeast of European Russia at the end of the 20th century. Norwegian J Geogr 55:241–244Google Scholar
  79. Osterkamp TE (2005) The recent warming of permafrost in Alaska. Glob Planet Change 49:187–202. doi:10.1016/j.glopjacha.2005.09.001CrossRefGoogle Scholar
  80. Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard RF, Ciais P, Moorcroft P, Caspersen JP, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon ME, Fan SM, Sarmiento JL, Goodale CL, Schimel D, Field CB (2001) Consistent land- and atmosphere-based US carbon sink estimates. Science 292:2316–2320. doi:10.1126/science.1057320CrossRefGoogle Scholar
  81. Panikov NS, Dedysh SN, Kolesnikov OM, Mardini AI, Sizova MV (2001) Metabolic and environmental control on methane emission from soils: mechanistic studies of mesotrophic fen in West Siberia. Water Air Soil Pollut: Focus 1(2–6):415–428Google Scholar
  82. Parkinson CL (2006) Earth’s cryosphere: current state and recent changes. Ann Rev Environ Res 31:33–60. doi:10.1146/ Scholar
  83. Peterson BJ, Holmes RM, McClelland JW, Vörösmarty CJ, Lammers RB, Shiklomanov IA, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2173CrossRefGoogle Scholar
  84. Prigent C, Papa F, Aires F, Russow WB, Matthews E (2007) Global inundation dynamics inferred from multiple satellite observations. J Geophys Res 112:D12107. doi:10.1029/2006JD007847CrossRefGoogle Scholar
  85. Pulliainen JT, Grandell J, Hallikainen M (1999) HUT snow emission model and its applicability for snow water equivalent retrieval. Trans Geosci Rem Sens 37:1378–1390CrossRefGoogle Scholar
  86. Rahmstorf S, Alley RB (2002) Stochastic resonance in glacial climate, Eos, Trans Am Geophys Union 83(12):129–135Google Scholar
  87. Raisanen J (2008) Warmer climate: less or more snow? Climate Dynamics 30:307–319CrossRefGoogle Scholar
  88. Rawlins MA, Willmott CJ, Shiklomanov A, Frolking S, Vörösmarty CJ (2006) Evaluation of trends in derived snowfall and rainfall across Eurasia and linkages with discharge to the Arctic Ocean. Geophys Res Lett 33:L07403. doi: 10.1029/2005GL025231CrossRefGoogle Scholar
  89. Raymond PA, McClelland JW, Holmes RM, Zhulidov AV, Mull K, Peterson BJ, Striegl RG, Aiken GR, Gurtovaya TY (2007) Flux and age of dissolved organic carbon exported to the Arctic Ocean: a carbon isotopic study of the five largest arctic rivers. Glob Biogeochem Cycles 21(4). doi:10.1029/2007GB002934Google Scholar
  90. Rennermalm AK, Wood EF, Weaver AJ, Eby M, Dery SJ (2007) Relative sensitivity of the Atlantic meridional overturning circulation to river discharge into Hudson Bay and the Arctic Ocean. J Geophys Res 112:G04S48. doi:10.1029/2006JG000330CrossRefGoogle Scholar
  91. Richter-Menge J, Overland J, Proshutinsky A, Romanovsky V, Gascard JC, Karcher M, Maslanik J, Perovich D, Shiklomanov A, Walker D (2006). Arctic,  Chapter 5b. In: Shein KA (ed) State of the climate in 2005, Bull Am Meteorol Soc 87(6)
  92. Robinson DA, Dewey KF, Heim RR (1993) Global snow cover monitoring: an update. Bull Am Meteorol Soc 74:1689–1696CrossRefGoogle Scholar
  93. Romanov P, Gutman G, Csiszar I (2000) Automated monitoring of snow cover over North America with multispectral satellite data. J Appl Meteorol 39:1866–1880CrossRefGoogle Scholar
  94. Rosenfeld S, Grody N (2000) Anomalous microwave spectra of snow covered observed from special sensor microwave/imager measurements. J Geophys Res 105(D11):14913–14925CrossRefGoogle Scholar
  95. Saarnio S, Alm J, Silvola J, Lohila A, Nykänen H, Martikainen PJ (1997) Seasonal variation in CH4 emissions and production and oxidation potentials at microsites of an oligotrophic pine fen.Oecologia 110:414–422CrossRefGoogle Scholar
  96. Serreze MC, Walsh JE, Chapin FS, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46:159–207CrossRefGoogle Scholar
  97. Shannon RD, White JR (1994) A three-year study of controls on methane emissions from two Michigan peatlands. J Ecol 84(2):239–246Google Scholar
  98. Sheng Y, Smith LC, MacDonald GM, Kremenetski KV, Frey KE, Velichko AA, Lee M, Beilman DW, Dubinin P (2004) A high-resolution GIS-based inventory of the west Siberian peat carbon pool. Glob Biogeochem Cycles 18:GB3004. doi:10.1029/2003GB002190CrossRefGoogle Scholar
  99. Shiklomanov AI, Lammers RB, Rawlins MA, Smith LC, Pavelsky TM (2007) Temporal and spatial variations in maximum river discharge from a new Russian data set. J Geophys Res 112:G04S53. doi:10.1029/2006JG000352CrossRefGoogle Scholar
  100. Shiklomanov AI, Lammers RB, Vörösmarty CJ (2002) Widespread decline in hydrological monitoring threatens pan-Arctic research, EOS, Trans Am Geophys Union, 83:16–17Google Scholar
  101. Shiklomanov IA, Shiklomanov AI, Lammers RB, Peterson BJ, Vörösmarty CJ (2000) The dynamics of river water inflow to the Arctic Ocean. In: Lewis EL (ed.) The freshwater budget of the arctic ocean. Kluwer Academic Press, Dordrecht, pp 281–296Google Scholar
  102. Shiklomanov AI, Yakovleva TI, Lammers RB, Karasev IPh, Vörösmarty CJ, Linder E (2006) Cold region river discharge uncertainty – estimates from large Russian rivers. J Hydrol 326:231–256CrossRefGoogle Scholar
  103. Shindell DT, Walter BP, Faluvegi G (2004) Impacts of climate change on methane emissions from wetlands. Geophys Res Lett 331:L21202. doi:10.1029/2004GL021009CrossRefGoogle Scholar
  104. Sicart JE, Arnaud Y (2007) Preliminary spectral characterization of snow in a high altitude tropical glacier and potential effects of impurities in snow on albedo of tropical glaciers. Hydrol Process 21:3642–3644. doi: 10.1002/hyp.6741CrossRefGoogle Scholar
  105. Simic A, Fernandes R, Brown R, Romanov P, Park W (2004) Validation of VEGETATION, MODIS, and GOES + SSM/I snow-cover products over Canada based on surface snow depth observations. Hydrol Process 18|:1089–1104CrossRefGoogle Scholar
  106. Singh P, Gan TY (2000) Retrieval of snow water equivalent using passive microwave brightness temperature data. Rem Sens Environ 74:275–286CrossRefGoogle Scholar
  107. Smith SL, Burgess MM, Riseborough D, Nixon FM (2005) Recent trends from Canadian permafrost monitoring network sites. Permafr Perigl Process 16:19–30CrossRefGoogle Scholar
  108. Smith LC, Pavelsky TM, MacDonald GM, Shiklomanov AI, Lammers RB (2007) Rising minimum daily flows in Northern Eurasian rivers: a growing influence of groundwater in the high-latitude hydrologic cycle. J Geophys Res 112:G04S47. doi:10.1029/2006JG000327CrossRefGoogle Scholar
  109. Smith LC, Sheng Y, MacDonald GM, Hinzman LD (2005) Disappearing Arctic lakes. Science 308:1429CrossRefGoogle Scholar
  110. Steele M, Boyd T (1998) Retreat of the cold halocline layer in the Arctic Ocean. J Geophys Res 103(C5):10419–10435CrossRefGoogle Scholar
  111. Strack M, Waddington JM (2007) Response of peatland carbon dioxide and methane fluxes to a water table drawdown experiment. Glob Biogeochem Cycles 21:GB1007. doi:10.1029/2006GB002715CrossRefGoogle Scholar
  112. Stohl A, Berg T, Burkhart JF, Fjæraa AM, Forster C, Herber A, Hov Ø, Lunder C, McMillan WW, Oltmans S, Shiobara M, Simpson D, Solberg S, Stebel K, Ström J, Tørseth K, Treffeisen R, Virkkunen K, Yttri KE (2007) Arctic smoke – record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006. Atmos Chem Phys 7:511–534CrossRefGoogle Scholar
  113. Surazakov AB, Aizen VB, Aizen EM, Nikitin SA (2007) Glacier changes in the Siberian Altai Mountains, Ob river basin, (1952–2006) estimated with high resolution imagery. Environ Res Lett 2. doi: 10.1088/1748-9326/2/4/045017Google Scholar
  114. Syed TH, Famiglietti JS, Zlotnicki V, Rodell M (2007) Contemporary estimates of Pan-Arctic freshwater discharge from GRACE and reanalysis. Geophys Res Lett 34. L19404. doi:10.1029/2007GL031254CrossRefGoogle Scholar
  115. Tait AB (1998). Estimation of snow water equivalent using passive microwave radiation data. Rem Sens Environ 64:286–291CrossRefGoogle Scholar
  116. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305:503–505. doi:10.1126/science.1099192CrossRefGoogle Scholar
  117. Toptygin AY, Gribanov KG, Imasu R, Bleuten W, Zakharov VI (2005) Seasonal methane content in atmosphere of the permafrost boundary zone in Western Siberia determined from IMG/ADEOS and AIRS/AQUA data. Proc SPIE 5655:508–514. doi:10.1117/12.579494CrossRefGoogle Scholar
  118. Trenberth KE (1999) Short-term climate variations. Recent accomplishments and issues for future progress. Storms vol 1. Pielke RSr, Pielke RJr (Eds). Routledge Press, London, pp 126–141Google Scholar
  119. UNEP/GRID-Arendal (2007) Permafrost extent in the Northern Hemisphere, UNEP/GRID- Arendal maps and graphics library, Accessed 27 July 2010.
  120. Van Blarcum SC, Miller JC, Russel GL (1995) High latitude runoff in a doubled CO2 climate. Clim Change 30:7–26CrossRefGoogle Scholar
  121. Vörösmarty CJ, Fekete B, Tucker BA (1996) River Discharge Database, Version 1.0 (RivDis v1.0), Volumes 0 through 6. A contribution to IHP-V Theme 1. Technical Documents in Hydrology Series. UNESCO, ParisGoogle Scholar
  122. Vörösmarty CJ, Fekete B, Tucker BA (1998) River Discharge Database, Version 1.1 (RivDis v1.0 supplement). Available through the Institute for the Study of Earth, Oceans, and Space / University of New Hampshire, Durham, NH (USA)Google Scholar
  123. Vörösmarty CJ, Hinzman LD, Peterson BJ, Bromwich DH, Hamilton LC, Morison J, Romanovsky VE, Sturm M, Webb RS (2001) The hydrologic cycle and its role in arctic and global environmental change: a rationale and strategy for synthesis study. Arctic Research Consortium of the US (ARCUS), Fairbanks, 84 pGoogle Scholar
  124. Vitt DH, Halsey LA, Bauer IE, Campbell C (2000) Spatial and temporal trends in carbon storage of peatlands of continental western Canada through the Holocene. Can J Earth Sci 37:683–693CrossRefGoogle Scholar
  125. Walsh J, Curry J, Fahnestock M, Kennicutt M, McGuire D, Rossow W, Steele M, Vorosmarty C, Wharton R (2001) Enhancing NASA’s contribution to polar science: A review of polar geophysical data sets. Commision on geosciences, environment and resources, National Research Council, National Academy Press, Washington DC, 124 pGoogle Scholar
  126. Walter KM, Edwards ME, Grosse G, Zimov SA, Chapin FS III (2007) Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation. Science 318:633–636. doi:10.1126/science.114.2924CrossRefGoogle Scholar
  127. Walter KM, Zimov SA, Chanton JP, Verblya D, Chapin FS III (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75CrossRefGoogle Scholar
  128. West JJ, Plug LJ (2007) Time-dependent morphology of thaw lakes and taliks in deep and shallow ground ice. J Geophys Res 113(F1). doi:10.1029/2006JF000696Google Scholar
  129. Willmott CJ, Robeson SM, Feddema JJ (1994) Estimating continental and terrestrial precipitation averages from raingauge networks. Int J Climatol 14:403–414CrossRefGoogle Scholar
  130. Worrall F, Burt TP (2007) Trends in DOC concentration in Great Britain. J Hydrol 346:81–92CrossRefGoogle Scholar
  131. Xiao X, Zhang Q, Boles S, Rawlings M, Moore III B (2004) Mapping snow cover in the Pan-Arctic zone, using multi-year (1998–2001) Images from optical VEGETATION and SPOT sensor. Int J Rem Sens 25:5731–5744CrossRefGoogle Scholar
  132. Yang DQ, Ye BS, Kane DL (2004) Streamflow changes over Siberian Yenisei river basin. J Hydrol 296:59–80CrossRefGoogle Scholar
  133. Ye H, Ellison M (2003) Changes in transitional snowfall season length in Northern Eurasia. Geophys Res Lett 30. doi:10.1029/2003GL016873Google Scholar
  134. Ye BS, Yang DQ, Kane DL (2003) Changes in Lena river streamflow hydrology: human impacts versus natural variations. Water Resourc Res 39:1200–1213CrossRefGoogle Scholar
  135. Zhang T (2005) Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev Geophys 43:RG4002. doi:10.1029/2004RG000157CrossRefGoogle Scholar
  136. Zhang T, Barry RG, Knowles K, Heginbottom JA, Brown J (1999) Statistics and characteristics of permafrost and ground ice distribution in the Northern Hemisphere. Polar Geogr 23(2):147–169Google Scholar
  137. Zhou L, Kaufmann RK, Tian Y, Myneni RB, Tucker CJ (2003) Relation between interannual variations in satellite measures of northern forest greenness and climate between 1982 and 1999. J Geophys Res 108(D1):4004. doi:10.1029/2002JD002510CrossRefGoogle Scholar
  138. Zhou L, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res 106(D17):20069–20083CrossRefGoogle Scholar
  139. Zhuang Q, Melillo JM, Sarofim MC, Kicklighter DW, McGuire AD, Felzer BS, Sokolov A, Prinn RG, Steudler PA, Hu S (2006) CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century. Geophys Res Lett 33:L17403. doi:10.1029/2006GL026972CrossRefGoogle Scholar
  140. Zimov SA, Schuur EAG, Chapin FS (2006) Permafrost and the global carbon budget. Science 312:1612–1613CrossRefGoogle Scholar
  141. Zimov SA, Voropaev YV, Semiletov IP, Davidov SP, Prosiannikov SF, Chapin FS, Chapin MC, Trumbore S, Tyler S (1997) North Siberian lakes: a methane source fueled by Pleistocene carbon. Science 277:800–802CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Alexander I. Shiklomanov
    • 1
  • Theodore J. Bohn
    • 2
  • Dennis P. Lettenmaier
    • 2
  • Richard B. Lammers
    • 1
  • Peter Romanov
    • 3
  • Michael A. Rawlins
    • 4
  • Jennifer C. Adam
    • 5
  1. 1.Water Systems Analysis GroupUniversity of New HampshireDurhamUSA
  2. 2.Department of Civil and Environmental EngineeringUniversity of WashingtonSeattleUSA
  3. 3.NOAA World Weather BuildingCamp SpringsUSA
  4. 4.Department of GeosciencesUniversity of MassachusettsAmherstUSA
  5. 5.Department of Civil and Environmental EngineeringWashington State UniversityPullmanUSA

Personalised recommendations