Advertisement

Recent Changes in Arctic Vegetation: Satellite Observations and Simulation Model Predictions

  • Scott J. Goetz
  • Howard E. Epstein
  • Uma S. Bhatt
  • Gensuo J. Jia
  • Jed O. Kaplan
  • Heike Lischke
  • Qin Yu
  • Andrew Bunn
  • Andrea H. Lloyd
  • Domingo Alcaraz-Segura
  • Pieter S.A. Beck
  • Josefino C. Comiso
  • Martha K. Raynolds
  • Donald A. Walker
Chapter

Abstract

This chapter provides an overview of observed changes in vegetation productivity in Arctic tundra and boreal forest ecosystems over the past 3 decades, based on satellite remote sensing and other observational records, and relates these to climate variables and sea ice conditions. The emerging patterns and relationships are often complex but clearly reveal a contrast in the response of the tundra and boreal biomes to recent climate change, with the tundra showing increases and undisturbed boreal forests mostly reductions in productivity. The possible reasons for this divergence are discussed and the consequences of continued climate warming for the vegetation in the Arctic region assessed using ecosystem models, both at the biome-scale and at high spatial resolution focussing on plant functional types in the tundra and the tundra-forest ecotones.

Keywords

Tree Ring Pacific Decadal Oscillation North Atlantic Oscillation Plant Functional Type Arctic Tundra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Achard F, Eva HD, Mollicone D, Beuchle R (2008) The effect of climate anomalies and human ignition factor on wildfires in Russian boreal forests. Philos Trans R Soc Lond B. doi:10.1098/rstb.2007.2203Google Scholar
  2. ACIA (2004) Impacts of a warming Arctic. In: Hassol SJ (ed) Arctic climate impact assessment overview report. Cambridge University Press, Cambridge, p 144Google Scholar
  3. Angert A, Biraud S, Bonfils C, Henning CC, Buermann W, Pinzon J, Tucker CJ, Fung I (2005) Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proc Natl Acad Sci USA. doi:10.1073/pnas.0501647102Google Scholar
  4. Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB, Delire C, Mirin A (2007) Combined climate and carbon-cycle effects of large-scale deforestation. Proc Natl Acad Sci USA. doi:10.1073/pnas.0608998104Google Scholar
  5. Bhatt U, Walker D, Raynolds M, Comiso J (2008) Examining relationships between sea ice and Arctic vegetation on the Pan-Arctic regional and site scales. Eur Res Abst 10:EGU2008-A-11271Google Scholar
  6. Bunn AG, Goetz SJ (2006) Trends in satellite observed circumpolar photosynthetic activity from 1982–2003: the influence of seasonality, cover type and vegetation density. Earth Interact 10:1–19CrossRefGoogle Scholar
  7. Bunn AG, Goetz SJ, Kimball JS, Zhang K (2007) Northern high latitude ecosystems respond to recent climate change. EOS 88:333–335CrossRefGoogle Scholar
  8. Chapin FS III, Bret-Harte MS, Hobbie SE, Zhong, H (1996) Plant functional types as predictors of transient responses of Arctic vegetation to global change. J Veg Sci 7:347–358CrossRefGoogle Scholar
  9. Chapin FS III, Callaghan TV, Bergeron Y, Fukuda M, Johnstone JF, Juday G, Zimov SA (2004) Global change and the boreal forest: thresholds, shifting States or gradual change? Ambio 33:361–365Google Scholar
  10. Chapin FS III, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995) Responses of Arctic Tundra to experimental and observed changes in climate. Ecology 76(3):694–711. doi:10.2307/1939337CrossRefGoogle Scholar
  11. Chapin FS III, Sturm M, Serreze MC, McFadden JP, Key JR, Lloyd AH, McGuire AD, Rupp TS, Lynch AH, Schimel JP, Beringer J, Chapman WL, Epstein HE, Euskirchen ES, Hinzman LD, Jia G, Ping CL, Tape KD, Thompson CDC, Walker DA, Welker JM (2005) Role of land-surface changes in Arctic summer warming. Science 310:657–660CrossRefGoogle Scholar
  12. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon WT, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the 4th assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  13. Clark J (1998) Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord. Am Nat 152:204–224CrossRefGoogle Scholar
  14. Comiso JC (2002) A rapidly declining perennial sea ice cover in the Arctic. Geophys Res Lett 29(20):1956. doi:10.1029/2002GL015650CrossRefGoogle Scholar
  15. Comiso JC (2003) Warming trends in the Arctic from clear-sky satellite observations. J Clim 16:3498–3510CrossRefGoogle Scholar
  16. Comiso JC (2006) Arctic warming signals from satellite observations. Weather 61:70–76CrossRefGoogle Scholar
  17. Comiso JC, Nishio F (2008) Trends in the sea ice cover using enhanced and compatible AMSR-E,SSM/I, and SMMR data. J Geophys Res 113(C02S07). doi:10.1029/2007JC004257Google Scholar
  18. D’Arrigo R, Wilson R, Lipert B, Cherubini P (2008) On the ‘divergence problem’ in northern forests: a review of the tree-ring evidence and possible causes. Glob Planet Change. doi:10.1016/j.physletb.2003.10.071Google Scholar
  19. Deser C, Walsh JE, Timlin M (2000) Arctic sea ice variability in the context of recent atmospheric circulation trends. J Clim 13:617–633CrossRefGoogle Scholar
  20. Epstein HE, Calef MP, Walker MD, Chapin FS III, Starfield AM (2004) Detecting changes in arctic tundra plant communities in response to warming over decadal time scales. Glob Change Biol 10:1325–1334CrossRefGoogle Scholar
  21. Epstein HE, Chapin FS III, Walker MD, Starfield AM (2001) Analyzing the functional type concept in arctic plants using a dynamic vegetation model. Oikos 95:239–252CrossRefGoogle Scholar
  22. Epstein HE, Kaplan JO, Lischke H, Yu Q (2007) Simulating future changes in arctic tundra and sub-arctic vegetation. Comput Sci Eng 9:12–23CrossRefGoogle Scholar
  23. Epstein, HE, Walker MD, Chapin FS III, Starfield AM (2000) A transient, nutrient-based model of arctic plant community response to climatic warming. Ecol Appl 10:824–841CrossRefGoogle Scholar
  24. Field CB, Lobell DB, Peters HA, Chiariello NR (2007) Feedbacks of terrestrial ecosystems to climate change. Ann Rev Environ Resour 32:1–29CrossRefGoogle Scholar
  25. Food and Agriculture Organization (FAO) (1995) Digital soil map of the world and derived soil properties. Food and Agric Org, RomeGoogle Scholar
  26. Forbes BC, Marc Macias F, Pentti Z (2010) Russian arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Glob Change Biol 16(5):1542–1554Google Scholar
  27. Forbes BC, Stammler F, Kumpula T, Meschtyb N, Pajunen A, Kaarlejrvi E (2009) High resilience in the Yamal-Nenets social, ecological system, West Siberian Arctic, Russia. Proc Natl Acad Sci 106(52):22041–22048Google Scholar
  28. Friedl MA, McIver DK, Hodges JC, Zhang XY, Muchoney D, Strahler AH, Woodcock CE, Gopal S, Schneider A, Cooper A, Baccini A, Gao F, Schaaf C (2002) Global land cover mapping from MODIS: algorithms and early results. Remote Sens Environ 83:287–302CrossRefGoogle Scholar
  29. Goetz SJ, Bunn AG, Fiske GJ (2005) Satellite observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc Natl Acad Sci USA. doi:10.1073/pnas.0506179102Google Scholar
  30. Goetz SJ, Fiske G, Bunn A (2006) Using satellite time series data sets to analyze fire disturbance and recovery in the Canadian boreal forest. Rem Sens Environ 101:352–365CrossRefGoogle Scholar
  31. Goetz SJ, Mack MC, Gurney KR, Randerson JT, Houghton RA (2007) Ecosystem responses to recent climate change and fire disturbance at northern high latitudes: observations and model results contrasting Northern Eurasia and North America. Environ Res Lett 2(4). doi:10.1088/1748-9326/2/4/045031Google Scholar
  32. Goetz SJ, Prince SD (1999) Modeling terrestrial carbon exchange and storage: evidence and implications of functional convergence in light use efficiency. Adv Ecol Res 28:57–92CrossRefGoogle Scholar
  33. Goulden ML, Wofsy SC, Harden JW, Trumbore SE, Crill PM, Gower ST, Fries T, Daube BC, Fan SM, Sutton DJ, Bazzaz A, Munger JW (1998) Sensitivity of boreal forest carbon balance to soil thaw. Science 279:214–216CrossRefGoogle Scholar
  34. Harrison SP, Prentice IC (2003) Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on paleovegetation data, biome modelling and palaeoclimate simulations. Glob Chang Biol 9:983–1004CrossRefGoogle Scholar
  35. Jia GJ, Epstein HE, Walker DA (2003) Greening of the Alaskan Arctic over the past two decades. Geophys Res Lett. doi:10.1029/2003GL018268Google Scholar
  36. Jia GJ, Epstein HE, Walker DA (2004) Controls over intra-seasonal dynamics of AVHRR NDVI for the Arctic tundra in northern Alaska. Int J Rem Sens 25:1547–1564CrossRefGoogle Scholar
  37. Jia GJ, Epstein HE, Walker DA (2006) Spatial heterogeneity of tundra vegetation in response to recent temperature changes. Glob Change Biol 12:42–55CrossRefGoogle Scholar
  38. Kaplan JO, Bigelow NH, Prentice IC, Harrison SP, Bartlein PJ, Christensen TR, Cramer W, Matveyeva NV, McGuire AD, Murray DF, Razzhivin VY, Smith B, Walker DA, Anderson PM, Andreev AA, Brubaker LB, Edwards ME, Lozhkin AV (2003) Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. J Geophys Res 108(D19):8171. doi:10.1029/2002JD002559CrossRefGoogle Scholar
  39. Kaplan JO, New M (2006) Arctic climate change with a 2°C global warming: timing, climate patterns and vegetation change. Clim Change 79:213–241CrossRefGoogle Scholar
  40. Kaplan JO, Prentice IC, Buchmann N (2002) The stable carbon isotope composition of the terrestrial biosphere: modeling at scales from the leaf to the globe. Glob Biogeochem Cycles. doi:10.1029/2001GB001403Google Scholar
  41. Kasischke ES, Stocks BJ (eds) (2000) Fire, climate change and carbon cycling in the boreal forest. Springer, New YorkGoogle Scholar
  42. Kimball JS, McDonald KC, Zhao M (2006) Spring thaw and its effect on terrestrial vegetation productivity in the Western Arctic observed from satellite microwave and optical remote sensing. Earth Interact 10:1–22CrossRefGoogle Scholar
  43. Lischke H, Löffler T (2006) Intra-specific density dependence is required to maintain diversity in spatio-temporal forest simulations with reproduction. Ecol Model 198:341–361CrossRefGoogle Scholar
  44. Lischke H, Zimmermann NE, Bolliger J, Rickebusch S, Löffler TJ (2006) TreeMig: a forest-landscape model for simulating spatio-temporal patterns from stand to landscape scale. Ecol Model 199:409–420CrossRefGoogle Scholar
  45. Lloyd AH (2005) Ecological histories from Alaskan tree lines provide insight into future change. Ecology 86:1687–1695CrossRefGoogle Scholar
  46. Lloyd AH, Bunn AG (2007) Responses of the circumpolar boreal forest to 20th century climate variability. Environ Res Lett. doi:10.1088/1748-9326/2/4/045013Google Scholar
  47. Mack M, Treseder K, Manies K, Harden J, Schuur E, Vogel J, Randerson J, Chapin FS (2008) Recovery of aboveground plant biomass and productivity after fire in mesic and dry black spruce forests of interior Alaska. Ecosystems 11(2):209–225Google Scholar
  48. McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo L, Hayes DJ, Heimann M, Lorenson TD, Macdonald RW, Roulet N (2009) Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr 79:523–555CrossRefGoogle Scholar
  49. Myneni RB, Keeling CD, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–701CrossRefGoogle Scholar
  50. Nathan R, Katul GG, Horn HS, Thomas SM, Oren R, Avissar R, Pacala SW, Levin SA (2002) Mechanisms of long-distance dispersal of seeds by wind. Nature 418:409–413CrossRefGoogle Scholar
  51. Neigh CSR, Tucker CJ, Townshend JRG (2008) North American vegetation dynamics observed with multi-resolution satellite data. Rem Sens Environ 112:1749–1772CrossRefGoogle Scholar
  52. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563. doi:10.1126/science.1082750CrossRefGoogle Scholar
  53. New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25CrossRefGoogle Scholar
  54. Pavelsky TM, Smith LC (2004) Spatial and temporal patterns in Arctic river ice breakup observed with MODIS and AVHRR time series. Rem Sens Environ 93:328–338CrossRefGoogle Scholar
  55. Randerson JT, Liu H, Flanner MG, Chambers SD, Jin Y, Hess PG, Pfister G, Mack MC, Treseder KK, Welp LR, Chapin FS, Harden JW, Goulden ML, Lyons E, Neff JC, Schuur EAG, Zender CS (2006) The impact of boreal forest fire on climate warming. Science 314(5802):1130–1132. doi:10.1126/science.1132075CrossRefGoogle Scholar
  56. Raynolds MK (2009) Circumpolar Arctic NDVI and vegetation types: a spatial analysis of the distribution patterns and effects of climate and substrate. Ph.D Thesis, University of Alaska, Fairbanks.Google Scholar
  57. Reynolds CA, Jackson TJ, Rawls WJ (1999) Estimating available water content by linking the FAO soil map of the World with global soil profile databases and pedo-transfer functions. AGU Spring Meeting, American Geophysical Union, BostonGoogle Scholar
  58. Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459(7246):556–559Google Scholar
  59. Serreze MC, Walsh JE, Chapin FS, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, J. Morison WC, Zhang T, Barry RG (2000) Observational evidence of recent change in the Northern high-latitude environment. Clim Change 46(1–2):159–207. doi:10.1023/A:1005504031923CrossRefGoogle Scholar
  60. Shaver GR, Chapin FS (1991) Production: biomass relationships and element cycling in contrasting arctic vegetation types. Ecol Monogr 61:1–31CrossRefGoogle Scholar
  61. Shaver GR, Street LE, Rastetter EB, van Wijk MT, Williams M (2007) Functional convergence in regulation of net CO2 flux in heterogeneous tundra landscapes in Alaska and Sweden. J Ecol 95:802–817CrossRefGoogle Scholar
  62. Slayback DA, Pinzon JE, Los SO (2003) Northern hemisphere photosynthetic trends 1982–1999. Glob Change Biol 9:1–15CrossRefGoogle Scholar
  63. Soja AJ, Tchebakova NM, French NHF, Flannigan MD, Shugart HH, Stocks BJ, Sukhinin AI, Parfenova EI, Chapin FS III, Stackhouse PW Jr (2007) Climate-induced boreal forest change: preditions versus current observations. Glob Planet Change 56:274–296. doi:10.1016/J.GLOPLACHA.2006.07.028CrossRefGoogle Scholar
  64. Stroeve J, Markus T, Meier W, Miller J (2006) Recent changes in the Arctic melt season. Ann Glaciol 44:367–374CrossRefGoogle Scholar
  65. Sturm M, Racine C, Tape K (2001) Climate change: increasing shrub abundance in the Arctic. Nature 411:546–547CrossRefGoogle Scholar
  66. Tape K, Sturm M, Racine C (2006) The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob Change Biol 12:686–702CrossRefGoogle Scholar
  67. Treshnikov AF (1985) Atlas of the Arctic. Central Administrative Board of Geodesy and Cartography of the Ministereal Council of the USSR, Moscow (in Russian)Google Scholar
  68. Turetsky MR, Wieder RK, Vitt DH, Evans RJ, Scott KD (2007) The disappearance of relict permafrost in boreal north America: effects on peatland carbon storage and fluxes. Glob Change Biol 13(9):1922–1934Google Scholar
  69. Van Bogaert R, Walker D, Jia GJ, Grau O, Hallinger M, De Dapper M, Jonasson C, Callaghan TV (2007) Recent Changes in Vegetation. Arctic Report Card 2007. http://www.arctic.noaa.gov/reportcard/essay_vanbogaert.html. Accessed 1 June 2008
  70. Walker DA, The CAVM Team (2005) The circumpolar arctic vegetation map. J Veg Sci 16:267–282CrossRefGoogle Scholar
  71. Walker MD, Wahren CH, Hollister RD, Henry GH, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdóttir IS, Klein JA, Magnússon B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland Ø, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci USA. doi:10.1073/pnas.0503198103Google Scholar
  72. Zhang K, Kimball JS, Hogg EH, Zhao M, Oechel WC, Cassano JJ, Running SW (2008) Satellite-based model detection of recent climate-driven changes in northern high-latitude vegetation productivity. J Geophys Res Biogeosci 113(G03033). doi:03010.01029/02007JG000621Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Scott J. Goetz
    • 1
  • Howard E. Epstein
    • 2
  • Uma S. Bhatt
    • 3
  • Gensuo J. Jia
    • 4
  • Jed O. Kaplan
    • 5
  • Heike Lischke
    • 6
  • Qin Yu
    • 2
  • Andrew Bunn
    • 7
  • Andrea H. Lloyd
    • 8
  • Domingo Alcaraz-Segura
    • 9
  • Pieter S.A. Beck
    • 1
  • Josefino C. Comiso
    • 10
  • Martha K. Raynolds
    • 11
  • Donald A. Walker
    • 12
  1. 1.The Woods Hole Research CenterFalmouthUSA
  2. 2.Department of Environmental SciencesUniversity of VirginiaCharlottesvilleUSA
  3. 3.Department of Atmospheric Sciences Geophysical Institute, IARC Room 307University of Alaska FairbanksFairbanksUSA
  4. 4.START Regional Center for Temperate East AsiaChinese Academy of Science, Institute of Atmospheric PhysicsBeijingChina
  5. 5.EPFL Swiss Federal Institute of TechnologyLausanne, ENAC-ARVELausanneSwitzerland
  6. 6.Swiss Federal Institute for Forest Snow and Landscape Research WSLBirmensdorfSwitzerland
  7. 7.Department of Environmental SciencesHuxley College, Western Washington UniversityBellinghamUSA
  8. 8.Department of BiologyMiddlebury CollegeMiddleburyUSA
  9. 9.Department of Environmental SciencesUniversity of VirginiaCharlottesvilleUSA
  10. 10.Cryospheric Sciences BranchNASA Goddard Space Flight CenterGreenbeltUSA
  11. 11.Institute of Arctic Biology, University of Alaska FairbanksFairbanksUSA
  12. 12.Department of Biology and Wildlife, Institute of Arctic BiologyAlaska Geobotany Center, University of Alaska FairbanksFairbanksUSA

Personalised recommendations