Advertisement

Interactions of Arctic Aerosols with Land-Cover and Land-Use Changes in Northern Eurasia and their Role in the Arctic Climate System

  • Irina N. Sokolik
  • Judith Curry
  • Vladimir Radionov
Chapter

Abstract

Atmospheric aerosols have been hypothesized as playing an important role in significant climate and environmental changes that have been occurring in the Arctic. This Chapter concentrates on the role of Arctic aerosols in the energy balance and the hydrological cycle by considering several major aerosol types (sulfates, black carbon and dust) that originate in Northern Eurasia. Aerosols can affect the energy balance directly by scattering, absorbing, and emitting atmospheric radiation as well as by changing the surface albedo. Furthermore, aerosols perturb the radiative energy balance indirectly by affecting the properties, lifetime, and coverage of clouds. Aerosol-induced changes in clouds are also important in the hydrological cycle. An additional complexity arises from the potential connection of aerosols to feedbacks that involve the physical climate, ecological, and human components of the Arctic system. The abundances, chemical composition and spatiotemporal distributions of natural and anthropogenic aerosols, which are controlled by sources and ageing processes occurring during atmospheric transport, are the major factors governing the aerosol climate forcing. Over the past decades, the warming climate, socio-economic changes and changes in land cover and land use occurring in Northern Eurasia have been affecting sources and properties of atmospheric aerosols. These changes were likely to affect not only aerosol burden in the Russian Arctic but through the whole Arctic. Understanding how changes in land cover and land use have been affecting the abundances and distributions of natural and anthropogenic aerosols and how the aerosol-induced varying forcing has been affecting the Arctic climate system is of great importance to understand the overall response of the Arctic region to global warming associated with steadily increasing greenhouse gases.

Keywords

Aerosol Optical Depth Surface Albedo Asian Dust Anthropogenic Aerosol Cloud Condensation Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abakumova GM, Feigelson EM, Russak V, Stadnik VV (1996) Evaluation of long-term changes in radiation, cloudiness, and surface temperature on the territory of the Former Soviet Union. J. Clim 9:1319–1327CrossRefGoogle Scholar
  2. Albrech BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–1230CrossRefGoogle Scholar
  3. AMAP (2006) AMAP assessment 2006: acidifying pollutants, Arctic haze, and acidification in the Arctic. Arctic Monitoring and Assessment Programme, OsloGoogle Scholar
  4. Barrie LA (1986) Arctic air pollution: an overview of our current knowledge. Atmos Environ 20:643–663CrossRefGoogle Scholar
  5. Biscaye PE, Grousset FE, Svensson AM, Bory A, Barrie L (2000) Eurasian air pollution reaches eastern North America. Science 290:2258–2259CrossRefGoogle Scholar
  6. Blanchet JP, Girard E (1995) Water-vapor temperature feedback in the formation of continental arctic air: implications for climate. Sci Total Environ 160/161:793–802CrossRefGoogle Scholar
  7. Bodhaine BA, Dutton EG (1993) A long-term decrease in Arctic haze at Barrow, Alaska. Geophys Res Lett 20(10): 947–950CrossRefGoogle Scholar
  8. Bond TC, Streets DG, Yarber KF, Nelson SM, Woo JH, Klimont Z (2004), A technology-based global inventory of black and organic carbon emissions from combustion. J Geophys Res 109(D14203). doi:10.1029/2003JD003697Google Scholar
  9. Bond TC, Bhardwaj E, Dong R, Jogani R, Jung S, Roden C, Streets DG, Trautmann NM (2007) Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000. Glob Biogeochem Cycles 21(GB2018). doi:10.1029/2006GB002840Google Scholar
  10. Borys RD (1989) Studies of ice nucleation by arctic aerosol on AGASP-II. J Atmos Chem 9:169–185CrossRefGoogle Scholar
  11. Borys RD, Lowenthal DH, Mitchell DL (2000) The relationships among cloud micro- physics, chemistry, and precipitation rate in cold mountain cloud. Atmos Environ 34:2593–2602CrossRefGoogle Scholar
  12. Borys RD, Lowenthal DH, Cohn SA, Brown WOJ (2003) Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snow rate. Geophys Res Lett 30. doi:10.1029/2002GL016855Google Scholar
  13. Cahill CF (2003) Asian aerosol transport to Alaska during ACE-Asia. J Geophys Res 108(D23):8664. doi:10.1029/2002JD003271CrossRefGoogle Scholar
  14. Clarke AD, Noone KJ (1985) Soot in the Arctic snowpack: a cause for perturbation in radiative transfer. Atmos. Environ. 19:1053–2053CrossRefGoogle Scholar
  15. Chapin FS III, Sturm M, Serreze MC, McFadden JP, Key JR, Lloyd AH, McGuire AD, Rupp TS, Lynch AH, Schimel JP, Beringer J, Chapman WL, Epstein HE, Euskirchen ES, Hinzman LD, Jia G, Ping CL, Tape KD, Thompson CDC, Walker DA, Welker16 JM (2005) Role of land-surface changes in Arctic summer warming. Science 310(5748):657. doi:10.1126/science.1117368CrossRefGoogle Scholar
  16. Curry JA (1986) Interactions among turbulence, radiation, and microphysics in Arctic stratus clouds. J Atmos Sci 43:90–106CrossRefGoogle Scholar
  17. Curry JA (1995) Interactions among aerosols, clouds, and climate of the Arctic Ocean. Sci. Total Environ 160:777–791CrossRefGoogle Scholar
  18. Curry JA, Rossow WB, Schramm JL (1996) Overview of Arctic cloud and radiation properties. J Clim 9:1731–1764CrossRefGoogle Scholar
  19. Damoah R, Spichtinger N, Forster C, James P, Mattis I, Wandinger U, Beirle S, Stohl A (2004) Around the world in 17 days – hemispheric-scale transport of forest fire smoke from Russia in May 2003. Atmos Chem Phys 4:1311–1321CrossRefGoogle Scholar
  20. Eckhardt S, Stohl A, Beirle S, Spichtinger N, James P, Forster C, Junker C, Wagner T, Platt U, Jennings SG (2003) The North Atlantic Oscillation controls air pollution transport to the Arctic . Atmos Chem Phys 3:1769–1778CrossRefGoogle Scholar
  21. Flanner MG, Zender CS, JT Randerson JT, Rasch PJ (2007) Present day climate forcing and response from black carbon in snow. J Geophys Res 112(D11202). doi:10.1029/2006JD008003Google Scholar
  22. Francis JA, Hunter E, Key J, Wang X (2005) Clues to variability in Arctic minimum sea ice extent. Geophys Res Lett 32(L21501). doi:10.1029/2005GL024376Google Scholar
  23. Francis JA, Hunter E (2006) New insight into the disappearing Arctic sea ice. Eos, Trans Am Geophys Union 87:509–524CrossRefGoogle Scholar
  24. Fromm M, Alfred J, Hoppel K, Hornstein J, Bevilacqua R, Shettle E, Servranckx R, Li Z, Stocks B (2000) Observations of boreal forest fire smoke in the stratosphere by POAM III, SAGE II, and lidar in 1998. Geophys Res Lett 27:1407–1410CrossRefGoogle Scholar
  25. Gabric AJ, Qu B, Matrai P, Hirst AC (2005) The simulated response of dimethylsulfide production in the Arctic Ocean to global warming. Tellus B 57(5):391–403. doi: 10.1111/j.1600-0889.2005.00163.xCrossRefGoogle Scholar
  26. Garrett TJ, Zhao C, Dong X, Mace GC, Hobbs PV (2004) Effects of varying aerosol regimes on low-level Arctic stratus. Geophys Res Lett 31(L17105). doi:10.1029/2004GL019928Google Scholar
  27. Garrett TJ, Zhao C (2006) Increased arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature 440:787–789CrossRefGoogle Scholar
  28. Gavrilova MK (1963) Radiation Climate of the Arctic. Gidrometeoizdat, Leningrad, 225pGoogle Scholar
  29. Girard E, Blanchet JP, Dubois Y (2005) Effects of arctic sulphuric acid aerosols on wintertime low-level atmospheric ice crystals, humidity and temperature at Alert, Nunavut. Atmos Res 73:131–148CrossRefGoogle Scholar
  30. Hansen J, Nazarenko L (2004) Soot climate forcing via snow and ice albedos. Proc Natl Acad Sci USA 101:423–428CrossRefGoogle Scholar
  31. Harrington JY, Reisen T, Cotton WR, Kreidenweis SM (1999) Cloud resolving simulations of Arctic stratus. Part II: Transition-season clouds. Atmos Res 51:45–75CrossRefGoogle Scholar
  32. Harrington JY, Olsson PQ (2001) On the potential influence of ice nuclei on surface-forced marine stratocumulus cloud dynamics. J Geophys Res 106:27473–27484CrossRefGoogle Scholar
  33. Hassol SJ, Berner J, Callaghan TV, Fox S, Furgal C, Hoel AH, Instanes A, Juday GP (2004) Impacts of a warming Arctic. Cambridge University Press, Cambridge, 140 pGoogle Scholar
  34. Herber A, Thomason LW, Gernandt H, Leiterer U, Nagel D, Schulz K, Kaptur J, Albrecht T, Notholt J (2002) Continuous day and night aerosol optical depth observations in the Arctic between 1991 and 1999. J Geophys Res 107(D10):4097. doi:10.1029/2001JD000536CrossRefGoogle Scholar
  35. IPCC (2001) Radiative forcing of climate change. In: Climate change 2001, Cambridge University Press, New YorkGoogle Scholar
  36. IPCC (2007) Climate change 2007: the physical science basis-summary for policy makers. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, GenevaGoogle Scholar
  37. Iziomon MG, Lohmann U, Quinn PK (2006) Summertime pollution events in the Arctic and potential implications. J Geophys Res 111(D12206). doi:10.1029/2005JD006223Google Scholar
  38. Jiang H, Cotton WR, Pinto JO, Curry JA, Weissbluth MJ (2000) Cloud resolving simulations of mixed-phase arctic stratus observed during BASE: sensitivity to concentration of ice crystals and large-scale heat and moisture advection. J Atmos Sci 57:2105–2117CrossRefGoogle Scholar
  39. Kampe TU, Sokolik IN (2007) Remote sensing retrievals of fine mode aerosol optical depth and impacts on its correlation with CO from biomass burning. Geophys Res Lett 34(L12806). doi:10.1029/2007GL029805Google Scholar
  40. Koch D, J Hansen (2005) Distant origins of Arctic black carbon: a Goddard Institute for Space Studies ModelE experiment. J Geophys Res 110(D04204). doi:10.1029/2004JD005296Google Scholar
  41. Korontzi S, McCarty J, Loboda T, Kumar S, Justice C (2006) Global distribution of agricultural fires in croplands from 3 years of Moderate Resolution Imaging Spectroradiometer (MODIS) data. Glob Biogeochem Cycles 20(GB2021). doi:10.1029/2005GB002529Google Scholar
  42. Lavoue D, Liousse C, Cachier H, Stocks BJ, Goldammer JG (2000) Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes. J Geophys Res 105:26871–26890CrossRefGoogle Scholar
  43. Law KS, Stohl A (2007) Arctic air pollution: origins and impacts. Science 315:1537CrossRefGoogle Scholar
  44. Liu Y, Key JR, Francis JA, Wang X (2007) Possible causes of decreasing cloud cover in the Arctic winter, 1982–2000. Geophys Res Lett 34(L14705). doi:10.1029/2007GL030042Google Scholar
  45. Lohmann U (2002a) Possible aerosol effects on ice clouds via contact nucleation. J Atmos Sci 59:647–656CrossRefGoogle Scholar
  46. Lohmann U (2002b) A glaciation indirect effect caused by soot aerosols. Geophys Res Lett 29. doi:10.1029/2001GL014357Google Scholar
  47. Lohmann U, Zhang J, Pi J (2003) Sensitivity study of the effect of increased aerosol concentrations and snow crystal shapes on the snowfall rate in the Arctic. J Geophys Res 108. doi: 10.1029/ 2003 JD003377Google Scholar
  48. Lubin D, Vogelman AM (2006) A climatologically significant aerosol longwave indirect effect in the Arctic. Nature 439:453–456CrossRefGoogle Scholar
  49. MacCraken MC, Cess RD, Potter GL (1986) Climatic effects of anthropogenic Arctic aerosols: an illustration of climatic feedback mechanisms with one-and two-dimensional climate models. J Geophys Res 91:14445–14450CrossRefGoogle Scholar
  50. McGuire AD, Chapin FS III, Walsh JE, Wirth C (2006) Integrated regional changes in Arctic climate feedbacks: implications for the global climate system. Ann Rev Environ Res 31:61–91CrossRefGoogle Scholar
  51. McKendry IG, McDonald A, Leaitch WR, van Donkelaar A, Zhang Q, Duck TJ, Martin RV (2008) Trans-Pacific dust events observed at Whistler, British Columbia during NTEX-B. Atmos Chem Phys 8:6297–6307CrossRefGoogle Scholar
  52. Morrison H, Shupe M, Pinto JO, Curry JA (2005) Possible roles of ice nucleation mode and ice nuclei depletion in the extended lifetime of arctic mixed phase clouds. Geophys Res Lett 32(L18801). doi:10.1029/2005GL023614Google Scholar
  53. Morrison H, Pinto JO (2005) Mesoscale modeling of springtime Arctic mixed-phase stratiform clouds using a new two-moment bulk microphysics scheme. J Atmos Sci 62:3683–3704CrossRefGoogle Scholar
  54. Morrison H, Pinto JO, Curry JA, McFarquhar GM (2008) Sensitivity of modeled arctic mixed-phase stratocumulus to cloud condensation and ice nuclei over regionally varying surface conditions. J Geophys Res 113(D05203). doi:10.1029/2007JD008729Google Scholar
  55. Pinker RT, Zhang B, Dutton EG (2005) Do satellites detect trends in surface solar radiation. Science 308:850–854CrossRefGoogle Scholar
  56. Prenni AJ, Harrington JY, Tjernström M, DeMott PJ, Avramov A, Long CN, Kreidenweis SM, Olsson PQ, Verlinde J (2007) Can ice-nucleating aerosols affect arctic seasonal climate? Bull Am Meteorol Soc 88:205–221. doi:10.1175/BAMS-88-4-541Google Scholar
  57. Quinn PK, Shaw G, Andrews A, Dutton EG, Ruoho-Airola T, Gong SL (2007) Arctic haze: current trends and knowledge gaps. Tellus 59B:99–114Google Scholar
  58. Quinn PK, Bates TS, Baum E, Doubleday N, Fiore AM, Flanner M, Fridlind A, Garrett TJ, Koch D, Menon S, Shindell D, Stohl A, Warren SG (2008) Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies. Atmos Chem Phys 8:1723–1735CrossRefGoogle Scholar
  59. Randerson JT, Liu H, Flanner MG, Chambers SD, Jin Y, Hess PG, Pfister G, Mack MC, Treseder KK, Welp LR, Chapin FS, Harden JW, Goulden ML, Lyons E, Neff JC, Schuur EAG, Zender CS (2006) The impact of boreal forest fire on climate warming. Science 314:1130. doi:10.1126/science.1132075CrossRefGoogle Scholar
  60. Radionov VF, Marshunova MS (1992) Long-term variations in the turbidity of the Arctic atmosphere in Russia. Atmos-Ocean 30(4):531–549Google Scholar
  61. Radionov VF, Marshunova MS, Russina YN, Lubo-Lesnischenko KY, Pimanova YY (1995) Atmospheric aerosol turbidity over polar regions. Izvestiya, Atmos Ocean Phys 30:762–766Google Scholar
  62. Radionov VF, Rusina YN, Sibir EE (2007) Particularities of long-term variability of total solar radiation and atmospheric transparency characteristics in the polar region. Prob Arct Antarct 76:131–136 (in Russian)Google Scholar
  63. Rahn KA, Borys R, Shaw GE (1977) The Asian source of Arctic Haze bands. Nature 268:713–715CrossRefGoogle Scholar
  64. Serreze MC, Walsh JE, Chapman FS, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high latitude environment. Clim Change 46:159–207CrossRefGoogle Scholar
  65. Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea-ice cover. Science 315:1533–1536CrossRefGoogle Scholar
  66. Sirois A, Barrie LA (1999) Arctic lower tropospheric aerosol trends and composition at Alert, Canada: 1980–1995. J Geophys Res 104 (D9):11599–11618CrossRefGoogle Scholar
  67. Shahgedanova M, Lamakin M (2005) Trends in aerosol optical depth in the Russian Arctic and their links with synoptic climatology. Sci Total Environ 341:133–148CrossRefGoogle Scholar
  68. Shaw GE, Stamnes K (1980) Arctic haze: perturbation of the Polar radiation budget. Ann NY Acad Sci 338:533–539CrossRefGoogle Scholar
  69. Sharma S, E Andrews, Barrie LA, Ogren JA, Lavoue D (2006) Variations and sources of the equivalent black carbon in the High Arctic revealed by long term observations at Alert and Barrow: 1989 – 2003. J Geophys Res 111(D14208). doi:10.1029/2005JD006581Google Scholar
  70. Shevchenko V (2003) The influence of aerosols on the oceanic sedimentation and environmental conditions in the Arctic. Berichte zur Polar-und Meeresforschung 464:150 pGoogle Scholar
  71. Shindell DT (2007) Locale and remote contributions to arctic warming. Geophys Res Lett 34 (L14704). doi:10.1029/2007GL030221Google Scholar
  72. Shindell DT, Teich H, Chin M, Dentener F, Doherty RM, Faluvegi G, Fiore AM, Hess P, MacKenzie IA, Sanderson MG, Schultz MG, Schulz M, Stevenson DS, Textor C, Wild O, Bergmann DJ, Bian H, Cuvelier C, Duncan BN, Folberth G, Horowitz LW, Jonson J, Kaminski JW, Marmer E, Park R, Pringle KJ, Schroeder S, Szopa S, Takemura T, Zeng G, Keating TJ, Zuber A (2008) A multi-model assessment of pollution transport to the Arctic. Atmos Chem Phys Discuss 8:8385–8429CrossRefGoogle Scholar
  73. Soja AJ, Tchebakova NM, French NHF, Flannigan MD, Shugart HH, Stocks BJ, Sukhinin AI, Parfenova EI, Chapin FS III, Stackhouse W Jr (2007) Climate-induced boreal forest change: predictions versus current observations. Glob Planet Change 56:274–296CrossRefGoogle Scholar
  74. Sokolik IN (1992) Microphysical, optical and radiative properties of Arctic aerosols. Izvestiya. Atmos Ocean Phys 7:675–688Google Scholar
  75. Sokolik IN (2003) Dust. In: Holton JP, Curry JA, Doyle J (eds) Encyclopedia of atmospheric sciences. Academic Press, London, pp 668–672CrossRefGoogle Scholar
  76. Sokolik IN (2008) Global radiation balance. In: Jorgensen E (ed) Encyclopedia of ecology. Elsevier, OxfordGoogle Scholar
  77. Sokolik IN, Choi H, Darmenov A, Karabanov A (2008) Characterization of Arctic aerosol and its climate forcing with A-Train satellite constellation observations. Eos Trans Am Geophys Union 89(53)Google Scholar
  78. Stohl A, Berg T, Burkhart JF, Forster C, Herber A, Lunder C, McMillan WW, Oltmans S, Shiobara M, Simpson D, Solberg S, Stebel K, Treffeisen R, Virkkunen K, Yttri KE (2007) Arctic smoke –record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe. Atmos Chem Phys 7:511–534CrossRefGoogle Scholar
  79. Stone RS, Anderson GP, Andrews E, Dutton EG, Shettle EP, Berk A (2007) Incursions and radiative impact of Asian dust in northern Alaska. Geophys Res Lett 34(L14815). doi:10.1029/2007GL029878Google Scholar
  80. Stone RS, Anderson GP, Shettle EP, Andrews E, Loukachine K, Dutton EG, Schaaf C, Roman MO III (2008) Radiative impact of boreal smoke in the Arctic: Observed and modeled. J Geophys Res 113(D14S16). doi:10.1029/2007JD009657Google Scholar
  81. Streets DG, Bond TC, Lee T, Jang C (2004) On the future of carbonaceous aerosol emissionsю. J Geophys Res 109(D24212). doi:10.1029/2004JD004902Google Scholar
  82. Tomasi C, Vitale V, Lupi A, Di Carmine C, Campanelli M, Herber A, Treffeisen R, Stone RS, Andrews E, Sharma S, Radionov V, von Hoyningen-Huene W, Stebel K, Hansen GH, Myhre CI, Wehrli C, Aaltonen V, Lihavainen H, Virkkula A, Hillamo R, Ström J, Toledano C, Cachorro VE, Ortiz P, de Frutos AM, Blindheim S, Frioud M, Gausa M, Zielinski T, Petelski M, Yamanouchi T (2007) Aerosols in polar region: A historical overview based on optical depth and in situ observations. J Geophys Res 112(D16205). doi:10.1029/2007JD008432Google Scholar
  83. Vavrus S (2004) The impact of cloud feedbacks on Arctic climate under greenhouse forcing. J Clim 17:603–615CrossRefGoogle Scholar
  84. Wang X, Key J (2003) Recent trends in Arctic surface, cloud, and radiation properties from space. Science 299(5613):1725–1728CrossRefGoogle Scholar
  85. Weston ST, Bailey WG, McArthur LJB, Hertzman O (2007) Interannual solar and net radiation trends in the Canadian Arctic. J Geophys Res 112(D10105). doi:10.1029/2006JD008000Google Scholar
  86. Winker DM, Hunt WH, McGill MJ (2007) Initial performance assessment of CALIOP. Geophys Res Lett 34(L19803). doi:10.1029/2007GL030135Google Scholar
  87. Zuidema P (2005) An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA Journal of the Atmospheric Sciences 62:160–176CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Irina N. Sokolik
    • 1
  • Judith Curry
    • 1
  • Vladimir Radionov
    • 2
  1. 1.School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Arctic and Antarctic Research InstituteSt. PetersburgRussia

Personalised recommendations