An Estimation of Distribution Algorithms Applied to Sequence Pattern Mining

  • Paulo Igor A. Godinho
  • Aruanda S. Gonçalves Meiguins
  • Roberto C. Limão de Oliveira
  • Bianchi S. Meiguins
Conference paper


This paper presents a proposal of distribution’s estimated algorithm to the extraction of sequential patterns in a database which use a probabilistic model based on graphs which represent the relations among items that form a sequence. The model maps a probability among the items allowing them to adjust the model during the execution of the algorithm using the evolution process of EDA, optimizing the candidate’s generation of solution and extracting a group of sequential patterns optimized.


Probabilistic Model Sequential Pattern Minimum Support Pattern Mining Frequent Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R. e Srikant, R. “Mining Sequential Patterns”. In Proc. of 1995 International Conference Data Engineering, Taipei, Taiwan, March, (1995).Google Scholar
  2. 2.
    Agrawal, R. e Srikant, R. Fast. “Algorithms for Mining Association Rules”, In: Proc. 20th International Conference Very Large Data Bases, VLDB, (1994).Google Scholar
  3. 3.
    Baluja, S. e Caruana, R. “Removing the Genetics from Standard Genetic Algorithm”. In Proceedings of the International Conference on Machine Learning. Morgan Kaufmann. p. 38-46, (1995).Google Scholar
  4. 4.
    Fogel, D. “Evolutionary Computation: Toward a new Philosophy of Machine Intelligence”. 2ª Ed., IEEE Press, 312p, (2000).Google Scholar
  5. 5.
    Han, J.; Kamber, M. “Mining Sequence Patterns in Trasactional Databases. In: Data Mining: Concepts and Techniques”. 2. ed. San Francisco: Elsevier. p. 23-498, (2006).Google Scholar
  6. 6.
    Holland, J. “Adaptation in Natural and Artificial Systems. University of Michigan Press”, Ann Arbor, (1975).Google Scholar
  7. 7.
    Kantardzic, M. “Data Mining Concepts. In: Data Mining: Concepts, Models, Methods and Algorithms”. New York: IEEE Press, (2003).Google Scholar
  8. 8.
    Koza, J. R. “Genetic Programming: On the Programming of Computers by Natural Selection”. MIT Press, Cambridge, (1992).Google Scholar
  9. 9.
    Larose, D. L. “Introduction to Data Mining. In: Discovering Knowledge in Data”. New Jersey: Wiley, (2005).Google Scholar
  10. 10.
    Larrañaga, P. e Lozano, J. “Estimation of Distribution Algorithms: A new tool for Evolutionary Computation”, Kluwer Academic Publishers. 382p, (2002).Google Scholar
  11. 11.
    Muhlenbein, H. e PaaB, G. From recombination of genes to the estimation of distributions I . Binary parameters, Lecture Notes in Computer Science 1141: Parallel Problem Solving from Nature - PPSN IV, pp.178-187, Springer, (1996).Google Scholar
  12. 12.
    Pei, J., Han, J., Pinto, H., Chen, Q. e Dayal, U. “PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth”. Int. Conf. on Data Engineering, (2001).Google Scholar
  13. 13.
    Sakura, S.; Kitahara, Y.; Orihara, R. “A Sequential Pattern Mining Method based on Sequential Interestingness”. International Journal Of Computational Intelligence, Paris, p. 252-260. (2008).Google Scholar
  14. 14.
    Santana, R., Larrañaga, P. e Lozano, J. “Interactions and Dependencies in Estimation of Distribution Algorithms”. IEEE Press, 1418-1425, (2005).Google Scholar
  15. 15.
    Spence, Robert. Information Visualization. Barcelona: Acm Press, 459 p., (2001).Google Scholar
  16. 16.
    Srikant, R. e Agrawal, R. (1996) “Mining Sequential Patterns: Generalizations and Performance Improvements”. Proc. 5th EDBT, 3-17.Google Scholar
  17. 17.
    Zaki, M., J. “Spade: An Efficient Algorithm for Mining Frequent Sequences”. Machine Learning 42, ½, 31-60, (2001).Google Scholar
  18. 18.
    Zhao, Q. e Bhowmick, S. “Sequential Pattern Mining: A Survey”. Technical Report, CAIS, Nanyang Technological University, Singapore, No. 2003118, (2003).Google Scholar
  19. 19.
    Zhigljavsky, A. Theory of Global Random Search. Kluwer Academic Publishers, (1991).Google Scholar
  20. 20.˜mlearn/. Acessado em: 24/10/2009.

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Paulo Igor A. Godinho
    • 1
  • Aruanda S. Gonçalves Meiguins
    • 1
    • 2
  • Roberto C. Limão de Oliveira
    • 1
  • Bianchi S. Meiguins
    • 1
  1. 1.Universidade Federal do Pará – UFPABelémBrazil
  2. 2.Centro Universitário do Pará – CESUPABelémBrazil

Personalised recommendations