Skip to main content

Restoration potential of biomanipulation for eutrophic peri-urban ponds: the role of zooplankton size and submerged macrophyte cover

  • Pond Conservation
  • Chapter
Pond Conservation in Europe

Part of the book series: Developments in Hydrobiology 210 ((DIHY,volume 210))

  • 1928 Accesses

Abstract

Eight hypereutrophic phytoplankton dominated ponds from the Brussels Capital Region (Belgium) were biomanipulated (emptied with fish removal) to restore their ecological quality and reduce the risk of cyanobacterial bloom formation. Continuous monitoring of the ponds before and after the biomanipulation allowed the effects of the management intervention on different compartments of pond ecosystems (phytoplankton, zooplankton, submerged vegetation and nutrients) to be assessed. Fish removal resulted in a drastic reduction in phytoplankton biomass and a shift to the clear-water state in seven out of eight biomanipulated ponds. The reduction in phytoplankton biomass was associated with a marked increase in density and size of large cladocerans in six ponds and a restoration of submerged macrophytes in five ponds. The phytoplankton biomass in the ponds with extensive stands of submerged macrophytes was less affected by planktivorous fish recolonisation of some of the ponds later in the summer. The two non-vegetated ponds as well as one pond with sparse submerged vegetation showed a marked increase in phytoplankton biomass associated with the appearance of fish. Phytoplankton biomass increase coincided with the decrease in large Cladocera density and size. One pond lacking submerged macrophytes could maintain very low phytoplankton biomass owing to large Cladocera grazing alone. The results of this study confirmed the importance of large zooplankton grazing and revegetation with submerged macrophytes for the maintenance of the clear-water state and restoration success in hypereutrophic ponds. They also showed that large Cladocera size is more important than their number for efficient phytoplankton control and when cladocerans are large enough, they can considerably restrain phytoplankton growth, including bloom-forming cyanobacteria, even when submerged vegetation is not restored. The positive result of fish removal in seven out of eight biomanipulated ponds clearly indicated that such management intervention can be used, at least, for the short-term restoration of ecological water quality and prevention of noxious cyanobacterial bloom formation. The negative result of biomanipulation in one pond seems to be related to the pollution by sewage water.

Guest editors: B. Oertli, R. Cereghino, A. Hull & R. Miracle

Pond Conservation: From Science to Practice. 3rd Conference of the European Pond Conservation Network, Valencia, Spain, 14–16 May 2008

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benndorf, J., W. Boing, J. Koop & I. Neubauer, 2002. Top-down control of phytoplankton: the role of time scale, lake depth and trophic state. Freshwater Biology 47: 2282–2295.

    Article  Google Scholar 

  • Blindow, I., A. Hargeby, B. M. A. Wagner & G. Andersson, 2000. How important is the crustacean plankton for the maintenance of water clarity in shallow lakes with abundant submerged vegetation? Freshwater Biology 44: 185–197.

    Article  Google Scholar 

  • Brönmark, C. & L.-A. Hansson, 2005. The Biology of Lakes and Ponds. Oxford University Press, Oxford.

    Google Scholar 

  • Carpenter, S. R., 2005. Eutrophication of aquatic ecosystems: bistability and soil phosphorus. PNAS 102: 10002–10005.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity: Fish predation and herbivory can regulate lake ecosystems. Bioscience 35: 634–639.

    Article  Google Scholar 

  • Carpenter, S. R., J. J. Cole, J. R. Hodgson, J. F. Kitchell, M. L. Pace, D. Bade, K. L. Cottingham, T. E. Essington, J. N. Houser & D. E. Schindler, 2001. Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecological Monographs 71: 163–186.

    Article  Google Scholar 

  • Christoffersen, K., B. Riemann, A. Klysner & M. Sondergaard, 1993. Potential role of fish predation and natural populations of zooplankton in structuring a plankton community in eutrophic lake water. Limnology and Oceanography 38: 561–573.

    Article  Google Scholar 

  • Gliwicz, Z. M., 1990. Why do cladocerans fail to control algal blooms? Hydrobiologia 200: 83–97.

    Article  Google Scholar 

  • Gross, E. M., 1999. Allelopathy in benthic and littoral areas: case studies on allochemicals from benthic cyanobacteria and submersed macrophytes. In Inderjit, K. M. M. Dakshini & C. L. Foy (eds), Principles and Practices in Plant Ecology: Allelochemical Interactions. CRC Press/Begell House, New York: 179–199.

    Google Scholar 

  • Gross, M. E., D. Erhard & E. Iványi, 2003. Allelopathic activity of Ceratophyllum demersum L. and Najas marina ssp. intermedia (Wolfgang) Casper. Hydrobiologia 506–509: 583–589.

    Article  Google Scholar 

  • Hasle, G. R., 1978. The inverted-microscope method. In Sournia, A. (ed.), Phytoplankton Manual. UNESCO, Paris: 88–96.

    Google Scholar 

  • Irfanullah, H. M. & B. Moss, 2005. A filamentous green algae-dominated temperate shallow lake: Variations on the theme of clearwater stable states? Archiv Fur Hydrobiologie 163: 25–47.

    Article  CAS  Google Scholar 

  • Jeppesen, E., J. P. Jensen, P. Kristensen, M. Søndergaard, E. Mortensen, O. Sortkjaer & K. Olrik, 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes. 2. Threshold levels, long-term stability and conclusions. Hydrobiologia 200: 219–227.

    Article  Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342: 151–164.

    Article  Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard & T. L. Lauridsen, 2005. Response of fish and plankton to nutrient loading reduction in eight shallow Danish lakes with special emphasis on seasonal dynamics. Freshwater Biology 50: 1616–1627.

    Article  CAS  Google Scholar 

  • Jeppesen, E., M. Sondergaard, M. Meerhoff, T. L. Lauridsen & J. P. Jensen, 2007. Shallow lake restoration by nutrient loading reduction—some recent findings and challenges ahead. Hydrobiologia 584: 239–252.

    Article  CAS  Google Scholar 

  • Kemp, P. F., B. F. Sherr, E. B. Sherr & J. J. Cole, 1993. Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton.

    Google Scholar 

  • Lammens, E. H. H. R., 1999. The central role of fish in lake restoration and management. Hydrobiologia 395(396): 191–198.

    Article  Google Scholar 

  • Lauridsen, T. L., J. P. Jensen, E. Jeppesen & M. Sondergaard, 2003. Response of submerged macrophytes in Danish lakes to nutrient loading reductions and biomanipulation. Hydrobiologia 506: 641–649.

    Article  Google Scholar 

  • Moss, B., J. Madgwick & G. Phillips, 1996. A Guide to the Restoration of Nutrient-enriched Shallow Lakes. Broads Authority.

    Google Scholar 

  • Moss, B., D. Stephen, C. Alvarez, E. Becares, W. Van de Bund, S. E. Collings, E. Van Donk, E. De Eyto, T. Feldmann, C. Fernandez-Alaez, M. Fernandez-Alaez, R. J. M. Franken, F. Garcia-Criado, E. M. Gross, M. Gyllstrom, L. A. Hansson, K. Irvine, A. Jarvalt, J. P. Jensen, E. Jeppesen, T. Kairesalo, R. Kornijow, T. Krause, H. Kunnap, A. Laas, E. Lille, B. Lorens, H. Luup, M. R. Miracle, P. Noges, T. Noges, M. Nykanen, I. Ott, W. Peczula, E. Peeters, G. Phillips, S. Romo, V. Russell, J. Salujoe, M. Scheffer, K. Siewertsen, H. Smal, C. Tesch, H. Timm, L. Tuvikene, I. Tonno, T. Virro, E. Vicente & D. Wilson, 2003. The determination of ecological status in shallow lakes—a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conservation-Marine and Freshwater Ecosystems 13: 507–549.

    Google Scholar 

  • Peretyatko, A., J.-J. Symoens & L. Triest, 2007a. Impact of macrophytes on phytoplankton in eutrophic peri-urban ponds, implications for pond management and restoration. Belgian Journal of Botany 140: 83–99.

    Google Scholar 

  • Peretyatko, A., S. Teissier, J.-J. Symoens & L. Triest, 2007b. Phytoplankton biomass and environmental factors over a gradient of clear to turbid peri-urban ponds. Aquatic Conservation-Marine and Freshwater Ecosystems 17: 584–601.

    Article  Google Scholar 

  • Pinel-Alloul, B., 1995. Impacts des prédateurs invertébrés sur les communautés aquatiques. In Pourriot, R. & M. Meybeck (eds), Limnologie Générale. Masson, Paris: 628–686.

    Google Scholar 

  • Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Shapiro, J., 1990. Biomanipulation: the next phase—making it stable. Hydrobiologia 200–201: 13–27.

    Google Scholar 

  • Søndergaard, M. & B. Moss, 1998. Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. In Jeppessen, E., M. Sondergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 115–133.

    Google Scholar 

  • Søndergaard, M., E. Jeppesen, T. L. Lauridsen, C. Skov, E. H. Van Nes, R. Roijackers, E. Lammens & R. Portielje, 2007. Lake restoration: successes, failures and long-term effects. Journal of Applied Ecology 44: 1095–1105.

    Article  Google Scholar 

  • ter Braak, C. J. F. & P. Smilauer, 2002. CANOCO reference manual and user’s guide to Canoco for Windows: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca.

    Google Scholar 

  • van Donk, E. & W. J. van de Bund, 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquatic Botany 72: 261–274.

    Article  Google Scholar 

  • Van Wichelen, J., S. Declerck, K. Muylaert, I. Hoste, V. Geenens, J. Vandekerkhove, E. Michels, N. De Pauw, M. Hoffmann, L. De Meester & W. Vyverman, 2007. The importance of drawdown and sediment removal for the restoration of the eutrophied shallow Lake Kraenepoel (Belgium). Hydrobiologia 584: 291–303.

    Article  Google Scholar 

  • Wetzel, G. R. & E. G. Likens, 1990. Limnological Analyses. Springer-Verlag, New York.

    Google Scholar 

  • Willame, R., T. Jurczak, J. F. Iffly, T. Kull, J. Meriluoto & L. Hoffmann, 2005. Distribution of hepatotoxic cyanobacterial blooms in Belgium and Luxembourg. Hydrobiologia 551: 99–117.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Peretyatko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Peretyatko, A., Teissier, S., De Backer, S., Triest, L. (2009). Restoration potential of biomanipulation for eutrophic peri-urban ponds: the role of zooplankton size and submerged macrophyte cover. In: Oertli, B., Céréghino, R., Biggs, J., Declerck, S., Hull, A., Miracle, M.R. (eds) Pond Conservation in Europe. Developments in Hydrobiology 210, vol 210. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9088-1_24

Download citation

Publish with us

Policies and ethics