Skip to main content

The Development of a Stem Cell Therapy for Deafness

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

Medicine is at the doorsteps of a phenomenal revolution, brought by the advances in the stem cell field and the development of new technologies to engineer cells and tissues into more complex organs. The promise of a true regenerative approach to organ damage and loss of function is closer than ever of becoming a reality. The auditory field is participating of these developments with high ­expectations. Since the cochlea is an organ of difficult access and with very limited regenerative capacity, conventional therapeutic approaches have failed and, currently, the only treatments available are in the form of hearing aids and cochlear implants. The potential restoration of hearing by the use of exogenous stem cells will offer a solution to a condition that has very limited options. In this chapter, we are reviewing the increasing volume of research on this emerging field and discussing the key elements that need to be developed further, in order to translate the basic science into a clinical reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agterberg MJ, Versnel H, van Dijk LM, de Groot JC, Klis SF (2009) Enhanced survival of spiral ganglion cells after cessation of treatment with brain-derived neurotrophic factor in deafened guinea pigs. J Assoc Res Otolaryngol 10:355–367

    Article  PubMed  Google Scholar 

  • Altschuler RA, O’Shea KS, Miller JM (2008) Stem cell transplantation for auditory nerve replacement. Hear Res 242:110–116

    Article  PubMed  Google Scholar 

  • Anderson DG, Levenberg S, Langer R (2004) Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat Biotechnol 22:863–866

    Article  CAS  PubMed  Google Scholar 

  • Armstrong L, Hughes O, Yung S, Hyslop L, Stewart R, Wappler I, Peters H, Walter T, Stojkovic P, Evans J, Stojkovic M, Lako M (2006) The role of PI3K/AKT, MAPK/ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Hum Mol Genet 15:1894–1913

    Article  CAS  PubMed  Google Scholar 

  • Backhouse S, Coleman B, Shepherd R (2008) Surgical access to the mammalian cochlea for cell-based therapies. Exp Neurol 214:193–200

    Article  PubMed  Google Scholar 

  • Balasubramaniyan V, de Haas AH, Bakels R, Koper A, Boddeke HW, Copray JC (2004) Functionally deficient neuronal differentiation of mouse embryonic neural stem cells in vitro. Neurosci Res 49:261–265

    Article  CAS  PubMed  Google Scholar 

  • Bogaerts S, Douglas S, Corlette T, Pau H, Saunders D, McKay S, Oleskevich S (2008) Microsurgical access for cell injection into the mammalian cochlea. J Neurosci Methods 168:156–163

    Article  PubMed  Google Scholar 

  • Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195

    Article  CAS  PubMed  Google Scholar 

  • Campanelli JT, Sandrock RW, Wheatley W, Xue H, Zheng J, Liang F, Chesnut JD, Zhan M, Rao MS, Liu Y (2008) Expression profiling of human glial precursors. BMC Dev Biol 8:102

    Article  PubMed  Google Scholar 

  • Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Segil N (1999) p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development 126:1581–1590

    CAS  PubMed  Google Scholar 

  • Chen S, Do JT, Zhang Q, Yao S, Yan F, Peters EC, Scholer HR, Schultz PG, Ding S (2006) Self-renewal of embryonic stem cells by a small molecule. Proc Natl Acad Sci USA 103:17266–17271

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Cacciabue-Rivolta DI, Moore HD, Rivolta MN (2007) The human fetal cochlea can be a source for auditory progenitors/stem cells isolation. Hear Res 233:23–29

    Article  PubMed  Google Scholar 

  • Chen W, Johnson SL, Marcotti W, Andrews PW, Moore HD, Rivolta MN (2009a) Human fetal auditory stem cells can be expanded in vitro and differentiate into functional auditory neurons and hair cell-like cells. Stem Cells 27:1196–1204

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Jonhson SL, Kuhn S, Marcotti W, Andrews PW, Moore HD, Rivolta MN (2009b) FGF signaling can induce the generation of cochlear progenitors from hESCs with the potential to differentiate into functional hair cell-like cells and neurons UK National Stem Cell Network Oxford, UK, p 99

    Google Scholar 

  • Coleman B, Fallon JB, Pettingill LN, de Silva MG, Shepherd RK (2007) Auditory hair cell explant co-cultures promote the differentiation of stem cells into bipolar neurons. Exp Cell Res 313:232–243

    Article  CAS  PubMed  Google Scholar 

  • Coleman B, Hardman J, Coco A, Epp S, de Silva M, Crook J, Shepherd R (2006) Fate of embryonic stem cells transplanted into the deafened mammalian cochlea. Cell Transplant 15:369–380

    Article  CAS  PubMed  Google Scholar 

  • Corrales CE, Pan L, Li H, Liberman MC, Heller S, Edge AS (2006) Engraftment and differentiation of embryonic stem cell-derived neural progenitor cells in the cochlear nerve trunk: growth of processes into the organ of Corti. J Neurobiol 66:1489–1500

    Article  PubMed  Google Scholar 

  • Daudet N, Vago P, Ripoll C, Humbert G, Pujol R, Lenoir M (1998) Characterization of atypical cells in the juvenile rat organ of corti after aminoglycoside ototoxicity. J Comp Neurol 401:145–162

    Article  CAS  PubMed  Google Scholar 

  • Ding S, Gray NS, Wu X, Ding Q, Schultz PG (2002) A combinatorial scaffold approach toward kinase-directed heterocycle libraries. J Am Chem Soc 124:1594–1596

    Article  CAS  PubMed  Google Scholar 

  • Duan M, Agerman K, Ernfors P, Canlon B (2000) Complementary roles of neurotrophin 3 and a N-methyl-D-aspartate antagonist in the protection of noise and aminoglycoside-induced ototoxicity. Proc Natl Acad Sci USA 97:7597–7602

    Article  CAS  PubMed  Google Scholar 

  • Duan M, Venail F, Spencer N, Mezzina M (2004) Treatment of peripheral sensorineural hearing loss: gene therapy. Gene Ther 11 Suppl 1:S51–56

    Article  CAS  PubMed  Google Scholar 

  • Eisen MD (2003) Djourno, Eyries, and the first implanted electrical neural stimulator to restore hearing. Otol Neurotol 24:500–506

    Article  PubMed  Google Scholar 

  • Emre N, Coleman R, Ding S (2007) A chemical approach to stem cell biology. Curr Opin Chem Biol 11:252–258

    Article  CAS  PubMed  Google Scholar 

  • Enver T, Soneji S, Joshi C, Brown J, Iborra F, Orntoft T, Thykjaer T, Maltby E, Smith K, Dawud RA, Jones M, Matin M, Gokhale P, Draper J, Andrews PW (2005) Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. Hum Mol Genet 14:3129–3140

    Article  CAS  PubMed  Google Scholar 

  • Ernfors P, Duan ML, ElShamy WM, Canlon B (1996) Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3. Nat Med 2:463–467

    Article  CAS  PubMed  Google Scholar 

  • Ernfors P, Van De Water T, Loring J, Jaenisch R (1995) Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron 14:1153–1164

    Article  CAS  PubMed  Google Scholar 

  • Evsikov AV, Solter D (2003) Comment on ‘Stemness’: transcriptional profiling of embryonic and adult stem cells” and “a stem cell molecular signature”. Science 302:393; author reply 393

    Article  CAS  PubMed  Google Scholar 

  • Fekete DM, Muthukumar S, Karagogeos D (1998) Hair cells and supporting cells share a common progenitor in the avian inner ear. J Neurosci 18:7811–7821

    CAS  PubMed  Google Scholar 

  • Forge A, Li L, Corwin JT, Nevill G (1993) Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science 259:1616–1619

    Article  CAS  PubMed  Google Scholar 

  • Forge A, Li L, Nevill G (1998) Hair cell recovery in the vestibular sensory epithelia of mature guinea pigs. J Comp Neurol 397:69–88

    Article  CAS  PubMed  Google Scholar 

  • Fortunel NO, Otu HH, Ng HH, Chen J, Mu X, Chevassut T, Li X, Joseph M, Bailey C, Hatzfeld JA, Hatzfeld A, Usta F, Vega VB, Long PM, Libermann TA, Lim B (2003) Comment on “‘Stemness’: transcriptional profiling of embryonic and adult stem cells” and “a stem cell molecular signature”. Science 302:393; author reply 393

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Farinas I, Reichardt LF (1997) Lack of neurotrophin 3 causes losses of both classes of spiral ganglion neurons in the cochlea in a region-specific fashion. J Neurosci 17:6213–6225

    CAS  PubMed  Google Scholar 

  • Fu Y, Wang S, Liu Y, Wang J, Wang G, Chen Q, Gong S (2009) Study on neural stem cell transplantation into natural rat cochlea via round window. Am J Otolaryngol 30:8–16

    Article  PubMed  Google Scholar 

  • Ginis I, Luo Y, Miura T, Thies S, Brandenberger R, Gerecht-Nir S, Amit M, Hoke A, Carpenter MK, Itskovitz-Eldor J, Rao MS (2004) Differences between human and mouse embryonic stem cells. Dev Biol 269:360–380

    Article  CAS  PubMed  Google Scholar 

  • Hardie NA, Shepherd RK (1999) Sensorineural hearing loss during development: morphological and physiological response of the cochlea and auditory brainstem. Hear Res 128:147–165

    Article  CAS  PubMed  Google Scholar 

  • Hawkins RD, Bashiardes S, Helms CA, Hu L, Saccone NL, Warchol ME, Lovett M (2003) Gene expression differences in quiescent versus regenerating hair cells of avian sensory epithelia: implications for human hearing and balance disorders. Hum Mol Genet 12:1261–1272

    Article  CAS  PubMed  Google Scholar 

  • Hawkins RD, Bashiardes S, Powder KE, Sajan SA, Bhonagiri V, Alvarado DM, Speck J, Warchol ME, Lovett M (2007) Large scale gene expression profiles of regenerating inner ear sensory epithelia. PLoS ONE 2:e525

    Article  PubMed  Google Scholar 

  • Hildebrand MS, Dahl HH, Hardman J, Coleman B, Shepherd RK, de Silva MG (2005) Survival of partially differentiated mouse embryonic stem cells in the scala media of the guinea pig cochlea. J Assoc Res Otolaryngol 6:341–354

    PubMed  Google Scholar 

  • Holley MC (2005) Keynote review: The auditory system, hearing loss and potential targets for drug development. Drug Discov Today 10:1269–1282

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Andang M, Ni D, Ulfendahl M (2005a) Neural cograft stimulates the survival and differentiation of embryonic stem cells in the adult mammalian auditory system. Brain Res 1051:137–144

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Ulfendahl M, Olivius NP (2004) Survival of neuronal tissue following xenograft implantation into the adult rat inner ear. Exp Neurol 185:7–14

    Article  PubMed  Google Scholar 

  • Hu Z, Ulfendahl M, Prieskorn DM, Olivius P, Miller JM (2009) Functional evaluation of a cell replacement therapy in the inner ear. Otol Neurotol 30:551–558

    Article  PubMed  Google Scholar 

  • Hu Z, Wei D, Johansson CB, Holmstrom N, Duan M, Frisen J, Ulfendahl M (2005b) Survival and neural differentiation of adult neural stem cells transplanted into the mature inner ear. Exp Cell Res 302:40–47

    Article  CAS  PubMed  Google Scholar 

  • Iguchi F, Nakagawa T, Tateya I, Endo T, Kim TS, Dong Y, Kita T, Kojima K, Naito Y, Omori K, Ito J (2004) Surgical techniques for cell transplantation into the mouse cochlea. Acta Otolaryngol Suppl:43–47

    Google Scholar 

  • Ito J, Murata M, Kawaguchi S (2001) Regeneration and recovery of the hearing function of the central auditory pathway by transplants of embryonic brain tissue in adult rats. Exp Neurol 169:30–35

    Article  CAS  PubMed  Google Scholar 

  • Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR (2002) A stem cell molecular signature. Science 298:601–604

    Article  CAS  PubMed  Google Scholar 

  • Izumikawa M, Minoda R, Kawamoto K, Abrashkin KA, Swiderski DL, Dolan DF, Brough DE, Raphael Y (2005) Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 11:271–276

    Article  CAS  PubMed  Google Scholar 

  • Jongkamonwiwat N, Chen W, Rivolta MN (2009) Survival and differentiation of hESCs-derived Otic Neuroprogenitor cells (ONPs) transplanted into the gerbil cochlea UK National Stem Cell Network Oxford, UK, p 113

    Google Scholar 

  • Kada S, Nakagawa T, Ito J (2009) A mouse model for degeneration of the spiral ligament. J Assoc Res Otolaryngol 10:161–172

    Article  PubMed  Google Scholar 

  • Kamiya K, Fujinami Y, Hoya N, Okamoto Y, Kouike H, Komatsuzaki R, Kusano R, Nakagawa S, Satoh H, Fujii M, Matsunaga T (2007) Mesenchymal stem cell transplantation accelerates hearing recovery through the repair of injured cochlear fibrocytes. Am J Pathol 171:214–226

    Article  PubMed  Google Scholar 

  • Kawamoto K, Ishimoto S, Minoda R, Brough DE, Raphael Y (2003) Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci 23:4395–4400

    CAS  PubMed  Google Scholar 

  • Kawamoto K, Izumikawa M, Beyer LA, Atkin GM, Raphael Y (2009) Spontaneous hair cell regeneration in the mouse utricle following gentamicin ototoxicity. Hear Res 247:17–26

    Article  CAS  PubMed  Google Scholar 

  • Kelley MW, Talreja DR, Corwin JT (1995) Replacement of hair cells after laser microbeam irradiation in cultured organs of corti from embryonic and neonatal mice. J Neurosci 15:3013–3026

    CAS  PubMed  Google Scholar 

  • Kemp DT (2002) Otoacoustic emissions, their origin in cochlear function, and use. Br Med Bull 63:223–241

    Article  PubMed  Google Scholar 

  • Kim JB, Greber B, Arauzo-Bravo MJ, Meyer J, Park KI, Zaehres H, Scholer HR (2009) Direct reprogramming of human neural stem cells by OCT4. Nature 461(7264):649–653.

    Article  CAS  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (2006) Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J Neurosci 26:2115–2123

    Article  CAS  PubMed  Google Scholar 

  • Lang H, Schulte BA, Goddard JC, Hedrick M, Schulte JB, Wei L, Schmiedt RA (2008) Transplantation of mouse embryonic stem cells into the cochlea of an auditory-neuropathy animal model: effects of timing after injury. J Assoc Res Otolaryngol 9:225–240

    Article  PubMed  Google Scholar 

  • Lang H, Schulte BA, Schmiedt RA (2005) Ouabain induces apoptotic cell death in type I spiral ganglion neurons, but not type II neurons. J Assoc Res Otolaryngol 6:63–74

    Article  CAS  PubMed  Google Scholar 

  • Lawoko-Kerali G, Milo M, Davies D, Halsall A, Helyer R, Johnson CM, Rivolta MN, Tones MA, Holley MC (2004) Ventral otic cell lines as developmental models of auditory epithelial and neural precursors. Dev Dyn 231:801–814

    Article  CAS  PubMed  Google Scholar 

  • Li H, Liu H, Heller S (2003a) Pluripotent stem cells from the adult mouse inner ear. Nat Med 9:1293–1299

    Article  CAS  PubMed  Google Scholar 

  • Li H, Roblin G, Liu H, Heller S (2003b) Generation of hair cells by stepwise differentiation of embryonic stem cells. Proc Natl Acad Sci USA 100:13495–13500

    Article  CAS  PubMed  Google Scholar 

  • Malgrange B, Thiry M, Van De Water TR, Nguyen L, Moonen G, Lefebvre PP (2002) Epithelial supporting cells can differentiate into outer hair cells and Deiters’ cells in the cultured organ of Corti. Cell Mol Life Sci 59:1744–1757

    Article  CAS  PubMed  Google Scholar 

  • Marcotti W, Geleoc GS, Lennan GW, Kros CJ (1999) Transient expression of an inwardly rectifying potassium conductance in developing inner and outer hair cells along the mouse cochlea. Pflugers Arch 439:113–122

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka AJ, Kondo T, Miyamoto RT, Hashino E (2006) In vivo and in vitro characterization of bone marrow-derived stem cells in the cochlea. Laryngoscope 116:1363–1367

    Article  PubMed  Google Scholar 

  • Matsuoka AJ, Kondo T, Miyamoto RT, Hashino E (2007) Enhanced survival of bone-marrow-derived pluripotent stem cells in an animal model of auditory neuropathy. Laryngoscope 117:1629–1635

    Article  PubMed  Google Scholar 

  • Mei Y, Goldberg M, Anderson D (2007) The development of high-throughput screening approaches for stem cell engineering. Curr Opin Chem Biol 11:388–393

    Article  CAS  PubMed  Google Scholar 

  • Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642

    Article  CAS  PubMed  Google Scholar 

  • Moore DR, Shannon RV (2009) Beyond cochlear implants: awakening the deafened brain. Nat Neurosci 12:686–691

    Article  CAS  PubMed  Google Scholar 

  • Morest DK, Cotanche DA (2004) Regeneration of the inner ear as a model of neural plasticity. J Neurosci Res 78:455–460

    Article  CAS  PubMed  Google Scholar 

  • Muller FJ, Laurent LC, Kostka D, Ulitsky I, Williams R, Lu C, Park IH, Rao MS, Shamir R, Schwartz PH, Schmidt NO, Loring JF (2008) Regulatory networks define phenotypic classes of human stem cell lines. Nature 455:401–405

    Article  PubMed  Google Scholar 

  • Nadol JB, Jr. (1997) Patterns of neural degeneration in the human cochlea and auditory nerve: implications for cochlear implantation. Otolaryngol Head Neck Surg 117:220–228

    Article  PubMed  Google Scholar 

  • Nadol JB, Jr., Young YS, Glynn RJ (1989) Survival of spiral ganglion cells in profound sensorineural hearing loss: implications for cochlear implantation. Ann Otol Rhinol Laryngol 98:411–416

    PubMed  Google Scholar 

  • Ng F, Boucher S, Koh S, Sastry KS, Chase L, Lakshmipathy U, Choong C, Yang Z, Vemuri MC, Rao MS, Tanavde V (2008) PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood 112:295–307

    Article  CAS  PubMed  Google Scholar 

  • Nishimura K, Nakagawa T, Ono K, Ogita H, Sakamoto T, Yamamoto N, Okita K, Yamanaka S, Ito J (2009) Transplantation of mouse induced pluripotent stem cells into the cochlea. Neuroreport 20:1250–1254

    Article  PubMed  Google Scholar 

  • Oshima K, Grimm CM, Corrales CE, Senn P, Martinez Monedero R, Geleoc GS, Edge A, Holt JR, Heller S (2007) Differential distribution of stem cells in the auditory and vestibular organs of the inner ear. J Assoc Res Otolaryngol 8:18–31

    Article  PubMed  Google Scholar 

  • Parker MA, Corliss DA, Gray B, Anderson JK, Bobbin RP, Snyder EY, Cotanche DA (2007) Neural stem cells injected into the sound-damaged cochlea migrate throughout the cochlea and express markers of hair cells, supporting cells, and spiral ganglion cells. Hear Res 232:29–43

    Article  PubMed  Google Scholar 

  • Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298:597–600

    Article  CAS  PubMed  Google Scholar 

  • Raphael Y (2002) Cochlear pathology, sensory cell death and regeneration. Br Med Bull 63:25–38

    Article  CAS  PubMed  Google Scholar 

  • Rask-Andersen H, Bostrom M, Gerdin B, Kinnefors A, Nyberg G, Engstrand T, Miller JM, Lindholm D (2005) Regeneration of human auditory nerve. In vitro/in video demonstration of neural progenitor cells in adult human and guinea pig spiral ganglion. Hear Res 203:180–191

    Article  CAS  PubMed  Google Scholar 

  • Reyes JH, O’Shea KS, Wys NL, Velkey JM, Prieskorn DM, Wesolowski K, Miller JM, Altschuler RA (2008) Glutamatergic neuronal differentiation of mouse embryonic stem cells after transient expression of neurogenin 1 and treatment with BDNF and GDNF: in vitro and in vivo studies. J Neurosci 28:12622–12631

    Article  CAS  PubMed  Google Scholar 

  • Rivolta MN, Halsall A, Johnson CM, Tones MA, Holley MC (2002) Transcript profiling of functionally related groups of genes during conditional differentiation of a mammalian cochlear hair cell line. Genome Res 12:1091–1099

    Article  CAS  PubMed  Google Scholar 

  • Rivolta MN, Holley MC (2008) Gene arrays, cell lines, stem cells and sensory regeneration in mammalian ears. In: Salvi RJP, Popper AN, Fay RR (ed) Hair cell regeneration, repair and protection, Vol 33. Springer, New York, pp. 257–307

    Chapter  Google Scholar 

  • Rubel EW, Dew LA, Roberson DW (1995) Mammalian vestibular hair cell regeneration. Science 267:701–707

    Article  CAS  PubMed  Google Scholar 

  • Sajan SA, Warchol ME, Lovett M (2007) Toward a systems biology of mouse inner ear organogenesis: gene expression pathways, patterns and network analysis. Genetics 177:631–653

    Article  CAS  PubMed  Google Scholar 

  • Sales-Pardo I, Avendano A, Martinez-Munoz V, Garcia-Escarp M, Celis R, Whittle P, Barquinero J, Domingo JC, Marin P, Petriz J (2006) Flow cytometry of the Side Population: tips and tricks. Cell Oncol 28:37–53

    PubMed  Google Scholar 

  • Sato N, Sanjuan IM, Heke M, Uchida M, Naef F, Brivanlou AH (2003) Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev Biol 260:404–413

    Article  CAS  PubMed  Google Scholar 

  • Savary E, Hugnot JP, Chassigneux Y, Travo C, Duperray C, Van De Water T, Zine A (2007) Distinct population of hair cell progenitors can be isolated from the postnatal mouse cochlea using side population analysis. Stem Cells 25:332–339

    Article  CAS  PubMed  Google Scholar 

  • Schmiedt RA, Okamura HO, Lang H, Schulte BA (2002) Ouabain application to the round window of the gerbil cochlea: a model of auditory neuropathy and apoptosis. J Assoc Res Otolaryngol 3:223–233

    Article  CAS  PubMed  Google Scholar 

  • Sekiya T, Holley MC, Kojima K, Matsumoto M, Helyer R, Ito J (2007) Transplantation of conditionally immortal auditory neuroblasts to the auditory nerve. Eur J Neurosci 25:2307–2318

    Article  PubMed  Google Scholar 

  • Sekiya T, Kojima K, Matsumoto M, Kim TS, Tamura T, Ito J (2006) Cell transplantation to the auditory nerve and cochlear duct. Exp Neurol 198:12–24

    Article  PubMed  Google Scholar 

  • Sekiya T, Yagihashi A, Shimamura N, Asano K, Suzuki S, Matsubara A, Namba A, Shinkawa H (2003) Apoptosis of auditory neurons following central process injury. Exp Neurol 184:648–658

    Article  PubMed  Google Scholar 

  • Shi F, Corrales CE, Liberman MC, Edge AS (2007) BMP4 induction of sensory neurons from human embryonic stem cells and reinnervation of sensory epithelium. Eur J Neurosci 26:3016–3023

    Article  PubMed  Google Scholar 

  • Shinohara T, Bredberg G, Ulfendahl M, Pyykko I, Olivius NP, Kaksonen R, Lindstrom B, Altschuler R, Miller JM (2002) Neurotrophic factor intervention restores auditory function in deafened animals. Proc Natl Acad Sci USA 99:1657–1660

    Article  CAS  PubMed  Google Scholar 

  • Spahr AJ, Dorman MF (2004) Performance of subjects fit with the Advanced Bionics CII and Nucleus 3G cochlear implant devices. Arch Otolaryngol Head Neck Surg 130:624–628

    Article  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199

    Article  CAS  PubMed  Google Scholar 

  • Vallier L, Touboul T, Chng Z, Brimpari M, Hannan N, Millan E, Smithers LE, Trotter M, Rugg-Gunn P, Weber A, Pedersen RA (2009) Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathways. PLoS One 4:e6082

    Article  PubMed  Google Scholar 

  • Webster DB (1992) Degeneration followed by partial regeneration of the organ of Corti in deafness (dn/dn) mice. Exp Neurol 115:27–31

    Article  CAS  PubMed  Google Scholar 

  • Webster M, Webster DB (1981) Spiral ganglion neuron loss following organ of Corti loss: a quantitative study. Brain Res 212:17–30

    Article  CAS  PubMed  Google Scholar 

  • White PM, Doetzlhofer A, Lee YS, Groves AK, Segil N (2006) Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature 441:984–987

    Article  CAS  PubMed  Google Scholar 

  • Wognum AW, Eaves AC, Thomas TE (2003) Identification and isolation of hematopoietic stem cells. Arch Med Res 34:461–475

    Article  CAS  PubMed  Google Scholar 

  • Zhai S, Shi L, Wang BE, Zheng G, Song W, Hu Y, Gao WQ (2005) Isolation and culture of hair cell progenitors from postnatal rat cochleae. J Neurobiol 65:282–293

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Royal National Institute for Deaf People (RNID) to MR

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo N. Rivolta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Jongkamonwiwat, N., Rivolta, M.N. (2011). The Development of a Stem Cell Therapy for Deafness. In: Steinhoff, G. (eds) Regenerative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9075-1_27

Download citation

Publish with us

Policies and ethics