Skip to main content

Functionalized Nanomaterials

  • Chapter
  • First Online:
Regenerative Medicine
  • 1669 Accesses

Abstract

Regenerative medicine aims to repair tissues or organs for restoring normal functions, which represents one of the greatest challenges in modern science and medicine. Diverse techniques and materials are required to truly understand the process of tissue repairing and build a proper scaffold for cells attachment, proliferation and differentiation. Functionalized nanomaterials with nanotechnologies are the ideal to solve most of the problems of regenerative medicine. Multifunctionalized nanoparticles and nanostructured biomaterials can be powerful tools for cell tracking and matrix-like scaffold rebuilding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akerman ME, Chan WC, Laakkonen P et al (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 99:12617–12621

    CAS  PubMed  Google Scholar 

  • Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    CAS  Google Scholar 

  • Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76

    CAS  PubMed  Google Scholar 

  • Allemann E, Gurny R, Doelker E (1993) Drug-loaded nanoparticles: preparation methods and drug targeting issues. Eur J Pharm Biopharm 39:173–191

    CAS  Google Scholar 

  • Almany L, Seliktar D (2005) Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials 26:2467–2477

    CAS  PubMed  Google Scholar 

  • Backer MV, Gaynutdinov TI, Patel V et al (2005) Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Mol Cancer Ther 4:1423–1429

    CAS  PubMed  Google Scholar 

  • Badami AS, Kreke MR, Thompson MS et al (2006) Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials 27:596–606

    CAS  PubMed  Google Scholar 

  • Berndt P, Fields GB, Tirrell M (1995) Synthetic lipidation of peptides and amino acids: monolayer structure and properties. J Am Chem Soc 117:9515–9522

    CAS  Google Scholar 

  • Boland ED, Coleman BD, Barnes CP et al (2005) Electrospinning polydioxanone for biomedical applications. Acta Biomater 1:115–123

    PubMed  Google Scholar 

  • Bonadio J, Smiley E, Patil P et al (1999) Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med 5:753–759

    CAS  PubMed  Google Scholar 

  • Bruchez-Jr. M, Moronne M, Gin P et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    CAS  Google Scholar 

  • Bulte JW, Douglas T, Witwer B (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147

    CAS  PubMed  Google Scholar 

  • Bulte JWM, Zhang S-C, Gelderen Pv et al (1999) Neurotransplantation of magnetically labeled oligodendrocyte progenitors: Magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA 96:15256–15261

    CAS  PubMed  Google Scholar 

  • Bulte JWM, Ben-Hur T, Miller BR et al (2003) MR microscopy of magnetically labeled neurospheres transplanted into the Lewis EAE rat brain Magn Reson Med 50:201–205

    PubMed  Google Scholar 

  • Bulte JWM, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499

    CAS  PubMed  Google Scholar 

  • Butterworth MD, Illum L, Davis SS (2001) Preparation of ultrafine silica- and PEG-coated magnetite particles. Colloid Surf A 179:93–102

    CAS  Google Scholar 

  • Buzea C, Blandino IIP, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:17–71

    Google Scholar 

  • Cade D, Ramus E, Rinaudo M et al (2004) Tailoring of bioresorbable polymers for elaboration of sugar-functionalized nanoparticles. Biomacromolecules 5:922–927

    CAS  PubMed  Google Scholar 

  • Cao YC (2008) Nanomaterials for biomedical applications. Nanomedicine 3:467–469

    PubMed  Google Scholar 

  • Chaikof EL, Matthew H, Kohn J et al (2002) Biomaterials and scaffolds in reparative medicine. Ann NY Acad Sci 961:96–105

    CAS  PubMed  Google Scholar 

  • Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    CAS  PubMed  Google Scholar 

  • Chan WCW, Maxwell DJ, Gao X et al (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotech 13:40–46

    CAS  PubMed  Google Scholar 

  • Chen G, Ushida T, Tateishi T (2000) Hybrid biomaterials for tissue engineering: A preparative method for PLA or PLGA-collagen hybrid sponges. Adv Mater 12:455–457

    CAS  Google Scholar 

  • Chen VJ, Ma PX (2004) Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials 25:2065–2073

    CAS  PubMed  Google Scholar 

  • Chen VJ, Ma PX (2006) The effect of surface area on the degradation rate of nano-fibrous poly(l-lactic acid) foams. Biomaterials 27:3708–3715

    CAS  PubMed  Google Scholar 

  • Chiti F, Stefani M, Taddei N et al (2003) Rationalization of the effects of mutations on peptide andprotein aggregation rates. Nature 424:805–808

    CAS  PubMed  Google Scholar 

  • Chiu JB, Luu YK, Fang D et al (2005) Electrospun nanofibrous scaffolds for biomedical applications. J Biomed Nanotechnol 1:115–132

    CAS  Google Scholar 

  • Chong EJ, Phan TT, Lim IJ et al (2007) Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater 3:321–330

    CAS  PubMed  Google Scholar 

  • Chung T-W, Wang Y-Z, Huang Y-Y et al (2006) Poly (ε-caprolactone) grafted with nano-structured chitosan enhances growth of human dermal fibroblasts. Artif Organs 30:35–41

    CAS  PubMed  Google Scholar 

  • Clarke KI, Graves SE, Wong ATC et al (1993) Investigation into the formation and mechanical properties of a bioactive material based on collagen and calcium phosphate. J Mater Sci Mater Med 4:107–110

    CAS  Google Scholar 

  • Corot C, Robert P, Idée J-M et al (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504

    CAS  PubMed  Google Scholar 

  • Cui B, Wu C, Chen L et al (2007) One at a time, live tracking of NGF axonal transport using quantum dots. Proc Natl Acad Sci USA 104:13666–13671

    CAS  PubMed  Google Scholar 

  • Daar AS, Greenwood HL (2007) A proposed definition of regenerative medicine. J Tissue Eng Regen Med 1:179–184

    CAS  PubMed  Google Scholar 

  • Dahan M, Lévi S, Luccardini C et al (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–445

    CAS  PubMed  Google Scholar 

  • De La Luz Sierra M, Yang F, Narazaki M et al (2004) Differential processing of stromal-derived factor-1alpha and stromal-derived factor-1beta explains functional diversity. Blood 103:2452–2459

    Google Scholar 

  • Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    CAS  Google Scholar 

  • Du C, Cui FZ, Zhu XD et al (1999) Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater Res A 44:407–415

    CAS  Google Scholar 

  • Dubertret B, Skourides P, Norris DJ et al (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    CAS  PubMed  Google Scholar 

  • Elsdale T, Bard J (1972) Collagen substrata for studies on cell behavior. J Cell Biol 54:626–637

    CAS  PubMed  Google Scholar 

  • Engel E, Michiardi A, Navarro M et al (2008) Nanotechnology in regenerative medicine: the materials side. Trends Biotechnol 26:39–47

    CAS  PubMed  Google Scholar 

  • Ergun C, Liu HN, Webster TJ et al (2008) Increased osteoblast adhesion on nanoparticulate calcium phosphates with higher ca/p ratios. J Biomed Mater Res A 85A:236–241

    CAS  Google Scholar 

  • Fields GB, Lauer JL, Dori Y et al (1998) Proteinlike molecular architecture: Biomaterial applications for inducing cellular receptor binding and signal transduction. Peptide Sci 47:143–151

    CAS  Google Scholar 

  • Fong H, Chun I, Reneker DH (1999) Beaded nanofibers formed during electrospinning. Polymer 40:4585–4592

    CAS  Google Scholar 

  • Freyman T, Polin G, Osman H et al (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 27:1114–1122

    PubMed  Google Scholar 

  • Furlani D, Li W, Pittermann E et al (2009) A transformed cell population derived from cultured mesenchymal stem cells has no functional effect after transplantation into the injured heart. Cell Transplant 18:319–331

    PubMed  Google Scholar 

  • Gao X, Cui Y, Levenson RM et al (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    CAS  PubMed  Google Scholar 

  • Gentleman E, Nauman EA, Dee KC et al (2004) Short collagen fibers provide control of contraction and permeability in fibroblast-seeded collagen gels. Tissue Eng 10:421–427

    CAS  PubMed  Google Scholar 

  • Gentleman E, Nauman EA, Livesay GA et al (2006) Collagen composite biomaterials resist contraction while allowing development of adipocytic soft tissue in vitro. Tissue Eng 12:1639–1649

    CAS  PubMed  Google Scholar 

  • Ghoroghchian PP, Frail PR, Susumu K et al (2005) Near-infrared-emissive polymersomes: Self-assembled soft matter for in vivo optical imaging. Proc Natl Acad Sci USA 102:2922–2927

    CAS  PubMed  Google Scholar 

  • Gong Y, Ma Z, Gao C et al (2006) Specially elaborated thermally induced phase separation to fabricate poly(L-lactic acid) scaffolds with ultra large pores and good interconnectivity. J Appl Polym Sci 101:3336–3342

    CAS  Google Scholar 

  • Gong Y, Ma Z, Zhou Q et al (2008) Poly(lactic acid) scaffold fabricated by gelatin particle leaching has good biocompatibility for chondrogenesis. J Biomater Sci Polym Ed 19:207–221

    CAS  PubMed  Google Scholar 

  • Grinnell F, Bennett MH (1982) Ultrastructural studies of cell-collagen interactions. Method Enzymol 82A:535–544

    Google Scholar 

  • Groman EV, Bouchard JC, Reinhardt CP et al (2007) Ultrasmall mixed ferrite colloids as multidimensional magnetic resonance imaging, cell labeling, and cell sorting agents. Bioconjugate Chem 18:1763–1771

    CAS  Google Scholar 

  • Gu H, Zheng R, Zhang X et al (2004) Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: A conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc 126:5664–5665

    CAS  PubMed  Google Scholar 

  • Harrison BS (2008). Applicatins of nanotechnology. In Principles of regenerative medicine, A. Atala, R. Lanza, R. Nerem, and J.A. Thomson, eds. (New York, Academic).

    Google Scholar 

  • Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294:1684–1688

    CAS  PubMed  Google Scholar 

  • Hay ED (1991). Cell biology of extra cellular matrix (New York, Plenum).

    Google Scholar 

  • He W, Ma Z, Yong T et al (2005) Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials 26:7606–7615

    CAS  PubMed  Google Scholar 

  • Hong Y, Legge RL, Zhang S et al (2003) Effect of amino acid sequence and pH on nanofiber formation of self-assembling peptides EAK16-II and EAK16-IV. Biomacromolecules 4:1433-1442

    CAS  PubMed  Google Scholar 

  • Hong Z, Zhang P, He C et al (2005) Nano-composite of poly(l-lactide) and surface grafted hydroxyapatite: Mechanical properties and biocompatibility. Biomaterials 26:6296–6304

    CAS  PubMed  Google Scholar 

  • Huang L, McMillan RA, Apkarian RP et al (2000) Generation of synthetic elastin-mimetic small diameter fibers and fiber networks. Macromolecules 33:2989–2997

    CAS  Google Scholar 

  • Huang L, Nagapudi K, Apkarian RP et al (2001) Engineered collagen: PEO nanofibers and fabrics. J Biomater Sci Polym Ed 12:979–993

    CAS  PubMed  Google Scholar 

  • Ishii D, Kinbara K, Ishida Y et al (2003) Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. Nature 423:628–632

    CAS  PubMed  Google Scholar 

  • Itoh S, Kikuchi M, Takakuda K et al (2001) The biocompatibility and osteoconductive activity of a novel hydroxyapatite/collagen composite biomaterial, and its function as a carrier of rhBMP-2. J Biomed Mater Res A 54:445–453

    CAS  Google Scholar 

  • Itoh S, Kikuchi M, Koyama Y et al (2004) Development of a hydroxyapatite/collagen nanocomposite as a medical device. Cell Transplant 13:451–461

    Google Scholar 

  • Jain KK (2008). Regenerative medicine and tissue engineering. In The Handbook of Nanomedicine, K.K. Jain, ed. (Totowa, Humana Press).

    Google Scholar 

  • Jaiswal JK, Mattoussi H, Mauro JM et al (2002) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51

    PubMed  Google Scholar 

  • Jaleel MA, Tsai AC, Sarkar S et al (2004) Stromal cell-derived factor-1 (SDF-1) signalling regulates human placental trophoblast cell survival. Mol Hum Reprod 10:901–909

    CAS  PubMed  Google Scholar 

  • Jiang H, Hu Y, Li Y et al (2005) A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J Control Release 108:237–243

    CAS  PubMed  Google Scholar 

  • Josephson L, Tung C-H, Moore A et al (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates. Bioconjugate Chem 10:186–191

    CAS  Google Scholar 

  • Khang D, Carpente J, Chun YW et al (2010). Nanotechnology for regenerative medicine. Biomed Microdevices 12:575–587

    Google Scholar 

  • Kim J-s, Reneker DH (1999) Mechanical properties of composites using ultrafine electrospun fibers. Polym Compos 20:124–131

    CAS  Google Scholar 

  • Kiritsy CP, Lynch SE (1993) Role of growth factors in cutaneous wound healing: A review. Crit Rev Oral Biol Med 4:729–760

    CAS  PubMed  Google Scholar 

  • Kisiday J, Jin M, Kurz B et al (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair. Proc Natl Acad Sci USA 99: 9996–10001

    CAS  PubMed  Google Scholar 

  • Klopsch C, Furlani D, Gabel R et al (2009) Intracardiac injection of erythropoietin induces stem cell recruitment and improves cardiac functions in a rat myocardial infarction model. J Cell Mol Med 13:664–679

    CAS  PubMed  Google Scholar 

  • Koch AM, Reynolds F, Kircher MF et al (2003) Uptake and metabolism of a dual fluorochrome Tat-nanoparticle in HeLa cells. Bioconjugate Chem 14 1115–1121

    CAS  Google Scholar 

  • Kohler N, Fryxell GE, Zhang M (2004) A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J Am Chem Soc 126:7206–7211

    CAS  PubMed  Google Scholar 

  • Kostura L, Kraitchman DL, Mackay AM et al (2004) Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed 17:513–517

    PubMed  Google Scholar 

  • Kothapalli CR, Shaw MT, Wei M (2005) Biodegradable HA-PLA 3-D porous scaffolds: Effect of nano-sized filler content on scaffold properties. Acta Biomater 1:653–662

    PubMed  Google Scholar 

  • Kuntz R, Saltzman W (1997) Neutrophil motility in extracellular matrix gels: mesh size and adhesion affect speed of migration. Biophys J 72:1472–1480

    CAS  PubMed  Google Scholar 

  • Kwon IK, Park KD, Choi SW et al (2001) Fibroblast culture on surface-modified poly (glycolide-co-ε-caprolactone) scaffold for soft tissue regeneration. J Biomater Sci Polym Ed 12:1147–1160

    CAS  PubMed  Google Scholar 

  • Kwon IK, Kidoaki S, Matsuda T (2005) Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials 26:3929–3939

    CAS  PubMed  Google Scholar 

  • Kwon IK, Matsuda T (2005) Co-electrospun nanofiber fabrics of poly(l-lactide-co-ε-caprolactone) with type I collagen or heparin. Biomacromolecules 6:2096–2105

    CAS  PubMed  Google Scholar 

  • Larson DR, Zipfel WR, Williams RM et al (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436

    CAS  PubMed  Google Scholar 

  • Layrolle P, Daculsi G (2006) Nanostructured biomaterials. Nanomedicine 1:493–494

    Google Scholar 

  • Lemon BI, Crooks RM (2000) Preparation and characterization of dendrimer-encapsulated CdS semiconductor quantum dots. J Am Chem Soc 122:12886–12887

    CAS  Google Scholar 

  • Lewin M, Carlesso N, Tung C-H et al (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414

    CAS  PubMed  Google Scholar 

  • Lewis JD, Destito G, Zijlstra A et al (2006) Viral nanoparticles as tools for intravital vascular imaging. Nat Med 12:354–360

    CAS  PubMed  Google Scholar 

  • Lewus KE, Nauman EA (2005) In vitro characterization of a bone marrow stem cell-seeded collagen gel composite for soft tissue grafts: effects of fiber number and serum concentration. Tissue Eng 11:1015–1022

    CAS  PubMed  Google Scholar 

  • Li M, Mondrinos MJ, Gandhi MR et al (2005) Electrospun protein fibers as matrices for tissue engineering. Biomaterials 26:5999–6008

    CAS  PubMed  Google Scholar 

  • Li W-J, Laurencin CT, Caterson EJ et al (2002) Electrospun nanofibrous structure: A novel scaffold for tissue engineering. J Biomed Mater Res A 60:613–621

    CAS  Google Scholar 

  • Li W, Ma  N, Ong LL et al (2007a) Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 25:2118–2127

    CAS  PubMed  Google Scholar 

  • Li W, Nesselmann C, Zhou Z et al (2007b) Gene delivery to the heart by magnetic nanobeads. J Magn Magn Mater 311:336–341

    CAS  Google Scholar 

  • Li W, Ma  N, Ong LL et al (2008) Enhanced thoracic gene delivery by magnetic nanobead-mediated vector. J Gene Med 10:897–909

    CAS  PubMed  Google Scholar 

  • Liao SS, Cui FZ, Zhang W et al (2004) Hierarchically biomimetic bone scaffold materials: Nano-HA/collagen/PLA composite. J Biomed Mater Res B 68B:158–165

    Google Scholar 

  • Lidke DS, Nagy P, Heintzmann R et al (2004) Quantum dot ligands provide new insights into erbB/HER receptor  −  mediated signal transduction. Nat Biotechnol 22:198–203

    CAS  PubMed  Google Scholar 

  • Liu H, Webster TJ (2007) Nanomedicine for implants: A review of studies and necessary experimental tools. Biomaterials 28:354–369

    Google Scholar 

  • Luu YK, Kim K, Hsiao BS et al (2003) Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Control Release 89:341–353

    CAS  PubMed  Google Scholar 

  • Ma  L, Gao C, Mao Z et al (2003) Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24:4833–4841

    CAS  PubMed  Google Scholar 

  • Ma  L, Zhou J, Gao C et al (2007) Incorporation of basic fibroblast growth factor by a layer-by-layer assembly technique to produce bioactive substrates. J Biomed Mater Res B 83B:285–292

    CAS  Google Scholar 

  • Ma  N, Stamm C, Kaminski A et al (2005a) Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice. Cardiovasc Res 66:45–54

    CAS  PubMed  Google Scholar 

  • Ma Z, Kotaki M, Inai R et al (2005b) Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng 11:101–109

    PubMed  Google Scholar 

  • Ma Z, Gao C, Gong Y et al (2005c) Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor. Biomaterials 26:1253–1259

    CAS  PubMed  Google Scholar 

  • Mao Z, Ma  L, Zhou J et al (2005) Bioactive thin film of acidic fibroblast growth factor fabricated by layer-by-layer assembly. Bioconjugate Chem 16:1316–1322

    CAS  Google Scholar 

  • Martin GE, Cockshott ID (1977). A product comprising a mat of fibers prepared by electrostatically spinning an organic material and collecting the spun fibers on a suitable receiver, I.C.I. Limited, ed. (US)

    Google Scholar 

  • Mastrobattista E, van-der-Aa MAEM, Hennink WE et al (2006) Artificial viruses: a nanotechnological approach to gene delivery. Nat Rev Drug Discov 5:115–121

    PubMed  Google Scholar 

  • Matthews JA, Wnek GE, Simpson DG et al (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238

    CAS  PubMed  Google Scholar 

  • Matthews JA, Boland ED, Wnek GE et al (2003) Electrospinning of collagen type II: A feasibility study. J Bioact Compat Pol 18,:125–134

    CAS  Google Scholar 

  • Maysinger D, Behrendt M, Lalancette-Hébert M et al (2007) Real-time imaging of astrocyte response to quantum dots: in vivo screening model system for biocompatibility of nanoparticles. Nano Lett 7:2513–2520

    CAS  PubMed  Google Scholar 

  • McIntyre JO, Fingleton B, Wells KS et al (2004) Development of a novel fluorogenic proteolytic beacon for in vivo detection and imaging of tumour-associated matrix metalloproteinase-7 activity. Biochem J 377:617–628

    CAS  PubMed  Google Scholar 

  • McQuibban GA, Butler GS, Gong JH et al (2001) Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 276:43503–43508

    CAS  PubMed  Google Scholar 

  • Mikos AG, Thorsen AJ, Czerwonka LA et al (1994) Preparation and characterization of poly(L-lactic acid) foams. Polymer 35:1068–1077

    CAS  Google Scholar 

  • Miller DC, Thapa A, Haberstroh KM et al (2004) Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features. Biomaterials 25:53–61

    CAS  PubMed  Google Scholar 

  • Miller DC, Haberstroh KM, Webster TJ (2007) PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion. J Biomed Mater Res A 81A:678–684

    CAS  Google Scholar 

  • Moghimi SM, Hunter AC (2000) Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends Biotechnol 18:412–420

    CAS  PubMed  Google Scholar 

  • Mooney DJ, Baldwin DF, Suh NP et al (1996) Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17:1417–1422

    CAS  PubMed  Google Scholar 

  • Mulder WJM, Koole R, Brandwijk RJ et al (2006) Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett 6:1–6

    CAS  PubMed  Google Scholar 

  • Murugan R, Ramakrishna S (2007) Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Eng 13:1845–1866

    CAS  PubMed  Google Scholar 

  • Nam YS, Park TG (1999a) Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res A 47:8–17

    CAS  Google Scholar 

  • Nam YS, Park TG (1999b) Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials 20:1783–1790

    CAS  PubMed  Google Scholar 

  • Nam YS, Yoon JJ, Park TG (2000) A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res B 53:1–7

    CAS  Google Scholar 

  • Niemeyer CM, Ceyhan B (2001) DNA-directed functionalization of colloidal gold with proteins. Angew Chem Int Edit 40:3685–3688

    CAS  Google Scholar 

  • Papisov MI, Bogdanov A, Schaffer B et al (1993) Colloidal magnetic resonance contrast agents: effect of particle surface on biodistribution. J Magn Magn Mater 122:383–386

    CAS  Google Scholar 

  • Parak WJ, Boudreau R, Le-Gros M et al (2002) Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 14:882–885

    CAS  Google Scholar 

  • Peterson JT, Li H, Dillon L et al (2000) Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat. Cardiovasc Res 46:307–315

    CAS  PubMed  Google Scholar 

  • Ramachandran GN (1988) Stereochemistry of collagen. Int J Pept Proteins Res 31:1–16

    CAS  Google Scholar 

  • Rao J, Dragulescu-Andrasi A, Yao H (2007) Fluorescence imaging in vivo: recent advances. Curr Opin Biotech 18:17–25

    CAS  PubMed  Google Scholar 

  • Reddy ST, Rehor A, Schmoekel HG et al (2006) In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Control Release 112:26–34

    CAS  PubMed  Google Scholar 

  • Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223

    CAS  Google Scholar 

  • Rhyner MN, Smith AM, Gao X et al (2006) Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomedicine 1:209–217

    CAS  PubMed  Google Scholar 

  • Rogach A, Kershaw SV, Burt M et al (1999) Colloidally prepared HgTe nanocrystals with strong room-temperature infrared luminescence. Adv Mater 11:552–555

    CAS  Google Scholar 

  • Rovira A, Bareille R, Lopez I et al (1993) Preliminary report on a new composite material made of calcium phosphate, elastin peptides and collagens J Mater Sci Mater Med 4:372–380

    CAS  Google Scholar 

  • Sasaki T, Iwasaki N, Kohno K et al (2008) Magnetic nanoparticles for improving cell invasion in tissue engineering. J Biomed Mater Res A 86A:969–978

    CAS  Google Scholar 

  • Schaffer BK, Linker C, Papisov M et al (1993) MION-ASF: biokinetics of an MR receptor agent. Magn Reson Imaging 11:411–417

    CAS  PubMed  Google Scholar 

  • Schellenberger EA, Bogdanov AJ, Högemann D et al (2002) Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI. Mol Imaging 1:102–107

    CAS  PubMed  Google Scholar 

  • Schellenberger EA, Sosnovik D, Weissleder R et al (2004) Magneto/optical annexin V, a multimodal protein. Bioconjugate Chem 15:1062–1067

    CAS  Google Scholar 

  • Shah BS, Clark PA, Moioli EK et al (2007) Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett 7:3071–3079

    CAS  PubMed  Google Scholar 

  • Silva GA, Czeisler C, Niece KL et al (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355

    CAS  PubMed  Google Scholar 

  • Simon SR (1994). Orthopaedic basic science (Rosemont, American Academy of Orthopaedic Surgeons).

    Google Scholar 

  • So M-K, Xu C, Loening AM et al (2006) Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 24:339–343

    CAS  PubMed  Google Scholar 

  • Solanki A, Kim JD, Lee K-B (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine 3:567–578

    CAS  PubMed  Google Scholar 

  • Soto CM, Blum AS, Vora GJ et al (2006) Fluorescent signal amplification of carbocyanine dyes using engineered viral nanoparticles. J Am Chem Soc 128:5184–5189

    CAS  PubMed  Google Scholar 

  • Stitzel J, Liu J, Lee SJ et al (2006) Controlled fabrication of a biological vascular substitute. Biomaterials 27:1088–1094

    CAS  PubMed  Google Scholar 

  • Strom SC, Michalopoulos G (1982) Collagen as a substrate for cell growth and differentiation. Method Enzymol 82A:544–555

    Google Scholar 

  • Sun C, Sze R, Zhang M (2006) Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res A 78A:550–557

    CAS  Google Scholar 

  • Sun Z, Zussman E, Yarin AL et al (2003) Compound core-shell polymer nanofibers by co-electrospinning. Adv Mater 15:1929–1932

    CAS  Google Scholar 

  • Tabata Y (2003) Tissue regeneration based on growth factor release. Tissue Eng 9:S5–S15

    CAS  PubMed  Google Scholar 

  • Tampieri A, Celotti G, Landi E et al (2003) Biologically inspired synthesis of bone-like composite: Self-assembled collagen fibers/hydroxyapatite nanocrystals. J Biomed Mater Res A 67A:618–625

    CAS  Google Scholar 

  • Taniguchi N (1974). On the basic concept of ‘nano-technology’. In Proceedings of the International Conference of Production Engineering (Tokyo), pp. 18–23.

    Google Scholar 

  • TenHuisen KS, Martin RI, Klimkiewicz M et al (1995) Formation and properties of a synthetic bone composite: Hydroxyapatite-collagen. J Biomed Mater Res 29:803–810

    CAS  PubMed  Google Scholar 

  • Thomas V, Dean DR, Vohra YK (2006a) Nanostructured biomaterials for regenerative medicine. Curr Nanosci 2:155–177

    CAS  Google Scholar 

  • Thomas V, Jagani S, Johnson K et al (2006b) Electrospun bioactive nanocomposite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering. J Nanosci Nanotechnol 6:487–493

    CAS  PubMed  Google Scholar 

  • Thomas V, Dean DR, Jose MV et al (2007) Nanostructured biocomposite scaffolds based on collagen co-electrospun with nanohydroxyapatite. Biomacromolecules 8:631–637

    CAS  PubMed  Google Scholar 

  • Thorek DLJ, Chen AK, Czupryna J et al (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34:23–38

    PubMed  Google Scholar 

  • Vaccaro DE, Yang M, Weinberg JS et al (2008) Cell tracking using nanoparticles. J Cardiovasc Trans Res 1:217–220

    Google Scholar 

  • van-Tilborg GAF, Mulder WJM, Chin PTK et al (2006) Annexin A5-conjugated quantum dots with a paramagnetic lipidic coating for the multimodal detection of apoptotic cells. Bioconjugate Chem 17:865–868

    Google Scholar 

  • van Wachem PB, Plantinga JA, Wissink MJ et al (2001) In vivo biocompatibility of carbodiimide-crosslinked collagen matrices: Effects of crosslink density, heparin immobilization, and bFGF loading. J Biomed Mater Res 55:368–378

    PubMed  Google Scholar 

  • Venugopal J, Ma LL, Yong T et al (2005) In vitro study of smooth muscle cells on polycaprolactone and collagen nanofibrous matrices. Cell Biol Int 29:861–867

    CAS  PubMed  Google Scholar 

  • Verreck G, Chun I, Rosenblatt J et al (2003) Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. J Control Release 92:349–360

    CAS  PubMed  Google Scholar 

  • Wang W, Li W, Ong LL et al (2010) Localized SDF-1alpha gene release mediated by collagen substrate induces CD117+ stem cell homing. J Cell Mol Med 14:392–402

    Google Scholar 

  • Wang W, Li W, Ong LL et al (2009) Localized and sustained SDF-1 gene release mediated by fibronectin films: A potential method for recruiting stem cells. Int J Artif Organs 32:141–149

    CAS  PubMed  Google Scholar 

  • Webster TJ, Siegel RW, Bizios R (1999) Osteoblast adhesion on nanophase ceramics. Biomaterials 20:1221–1227

    CAS  PubMed  Google Scholar 

  • Webster TJ (2001). Nanophase ceramics: the future orthopedic and dental implant material. In Nanostructured materials, J.Y.-R. Ying, ed. (New York, Academic)

    Google Scholar 

  • Webster TJ, Ejiofor JU (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25:4731–4739

    CAS  PubMed  Google Scholar 

  • Wei G, Jin Q, Giannobile WV et al (2006) Nano-fibrous scaffold for controlled delivery of recombinant human PDGF-BB. J Control Release 112:103–110

    CAS  PubMed  Google Scholar 

  • Wei G, Ma PX (2006) Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres. J Biomed Mater Res A 78A:306–315

    CAS  Google Scholar 

  • Wei G, Ma PX (2008) Nanostructured biomaterials for regeneration. Adv Funct Mater 18:3568–3582

    CAS  Google Scholar 

  • Weissleder R, Papisov M (1992) Pharmaceutical iron oxides for MR imaging. Rev Magn Reson Med 4:1–20

    Google Scholar 

  • Weissleder R, Bogdanov A, Neuwelt EA et al (1995) Long-circulating iron oxides for MR imaging. Adv Drug Deliv Rev 16:321–334

    CAS  Google Scholar 

  • Wentworth B, Stewart J, Westrich J et al (2007). Studies on the retention of cells delivered to the rat heart. Paper presented at: European Society of Cardiology Congress (Vienna, Austria).

    Google Scholar 

  • Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    CAS  PubMed  Google Scholar 

  • Winter JO, Liu TY, Korgel BA et al (2001) Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells. Adv Mater 13:1673–1677

    CAS  Google Scholar 

  • Wnek GE, Carr ME, Simpson DG et al (2003) Electrospinning of nanofiber fibrinogen structures. Nano Lett 3:213–216

    CAS  Google Scholar 

  • Wu C, Barnhill H, Liang X et al (2005) A new probe using hybrid virus-dye nanoparticles for near-infrared fluorescence tomography. Optics Comm 255:366–374

    CAS  Google Scholar 

  • Yang F, Murugan R, Ramakrishna S et al (2004a) Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25:1891–1900

    CAS  PubMed  Google Scholar 

  • Yang XB, Bhatnagar RS, Li S et al (2004b) Biomimetic collagen scaffolds for human bone cell growth and differentiation. Tissue Eng 10:1148–1159

    CAS  PubMed  Google Scholar 

  • Yao C, Slamovich EB, Webster TJ (2008) Enhanced osteoblast functions on anodized titanium with nanotube-like structures. J Biomed Mater Res A 85A:157–166

    CAS  Google Scholar 

  • Ye L, Huang X (2005) MAP2: multiple alignment of syntenic genomic sequences. Nucl Acids Res 33:162–170

    CAS  PubMed  Google Scholar 

  • Yoshimoto H, Shin YM, Terai H et al (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077–2082

    CAS  PubMed  Google Scholar 

  • Yu WW, Qu L, Guo W et al (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860

    CAS  Google Scholar 

  • Yu Y-C, Tirrell M, Fields GB (1998) Minimal lipidation stabilizes protein-like molecular architecture. J Am Chem Soc 120:9979–9987

    CAS  Google Scholar 

  • Yu Y-C, Roontga V, Daragan VA et al (1999) Structure and Dynamics of Peptide-Amphiphiles Incorporating Triple-Helical Proteinlike Molecular Architecture. Biochemistry 38:1659–1668

    CAS  PubMed  Google Scholar 

  • Zaheer A, Lenkinski RE, Mahmood A et al (2001) In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat Biotechnol 19:1148–1154

    CAS  PubMed  Google Scholar 

  • Zeng J, Chen X, Xu X et al (2003) Ultrafine fibers electrospun from biodegradable polymers. J Appl Polym Sci 89:1085–1092

    CAS  Google Scholar 

  • Zhang L, Webster TJ (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4:66–80

    CAS  Google Scholar 

  • Zhang R, Ma PX (1999) Poly(α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res A 44:446–455

    CAS  Google Scholar 

  • Zhang R, Ma PX (2000) Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures. J Biomed Mater Res A 52:430–438

    CAS  Google Scholar 

  • Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178

    CAS  PubMed  Google Scholar 

  • Zhang Y, Huang Z-M, Xu X et al (2004) Preparation of core  −  shell structured PCL-r-gelatin bi-component nanofibers by coaxial electrospinning. Chem Mater 16:3406–3409

    CAS  Google Scholar 

  • Zhang Y, Ouyang H, Lim CT et al (2005a) Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B 72B:156–165

    CAS  Google Scholar 

  • Zhang YZ, Venugopal J, Huang Z-M et al (2005b) Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules 6:2583–2589

    CAS  PubMed  Google Scholar 

  • Zhou Q, Gong Y, Gao C (2005) Microstructure and mechanical properties of poly(L-lactide) scaffolds fabricated by gelatin particle leaching method. J Appl Polym Sci 98:1373–1379

    CAS  Google Scholar 

  • Zong X, Kim K, Fang D et al (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43:4403–4412

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyou Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Zhou, J., Li, W., Gao, C. (2011). Functionalized Nanomaterials. In: Steinhoff, G. (eds) Regenerative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9075-1_21

Download citation

Publish with us

Policies and ethics