Functionalized Nanomaterials

  • Jie Zhou
  • Wenzhong Li
  • Changyou Gao


Regenerative medicine aims to repair tissues or organs for restoring normal functions, which represents one of the greatest challenges in modern science and medicine. Diverse techniques and materials are required to truly understand the process of tissue repairing and build a proper scaffold for cells attachment, proliferation and differentiation. Functionalized nanomaterials with nanotechnologies are the ideal to solve most of the problems of regenerative medicine. Multifunctionalized nanoparticles and nanostructured biomaterials can be powerful tools for cell tracking and matrix-like scaffold rebuilding.


Magnetic Nanoparticles Regenerative Medicine Human Dermal Fibroblast Cell Tracking Nanofibrous Scaffold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akerman ME, Chan WC, Laakkonen P et al (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 99:12617–12621PubMedGoogle Scholar
  2. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937Google Scholar
  3. Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76PubMedGoogle Scholar
  4. Allemann E, Gurny R, Doelker E (1993) Drug-loaded nanoparticles: preparation methods and drug targeting issues. Eur J Pharm Biopharm 39:173–191Google Scholar
  5. Almany L, Seliktar D (2005) Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials 26:2467–2477PubMedGoogle Scholar
  6. Backer MV, Gaynutdinov TI, Patel V et al (2005) Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Mol Cancer Ther 4:1423–1429PubMedGoogle Scholar
  7. Badami AS, Kreke MR, Thompson MS et al (2006) Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials 27:596–606PubMedGoogle Scholar
  8. Berndt P, Fields GB, Tirrell M (1995) Synthetic lipidation of peptides and amino acids: monolayer structure and properties. J Am Chem Soc 117:9515–9522Google Scholar
  9. Boland ED, Coleman BD, Barnes CP et al (2005) Electrospinning polydioxanone for biomedical applications. Acta Biomater 1:115–123PubMedGoogle Scholar
  10. Bonadio J, Smiley E, Patil P et al (1999) Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med 5:753–759PubMedGoogle Scholar
  11. Bruchez-Jr. M, Moronne M, Gin P et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016Google Scholar
  12. Bulte JW, Douglas T, Witwer B (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147PubMedGoogle Scholar
  13. Bulte JWM, Zhang S-C, Gelderen Pv et al (1999) Neurotransplantation of magnetically labeled oligodendrocyte progenitors: Magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA 96:15256–15261PubMedGoogle Scholar
  14. Bulte JWM, Ben-Hur T, Miller BR et al (2003) MR microscopy of magnetically labeled neurospheres transplanted into the Lewis EAE rat brain Magn Reson Med 50:201–205PubMedGoogle Scholar
  15. Bulte JWM, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499PubMedGoogle Scholar
  16. Butterworth MD, Illum L, Davis SS (2001) Preparation of ultrafine silica- and PEG-coated magnetite particles. Colloid Surf A 179:93–102Google Scholar
  17. Buzea C, Blandino IIP, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:17–71Google Scholar
  18. Cade D, Ramus E, Rinaudo M et al (2004) Tailoring of bioresorbable polymers for elaboration of sugar-functionalized nanoparticles. Biomacromolecules 5:922–927PubMedGoogle Scholar
  19. Cao YC (2008) Nanomaterials for biomedical applications. Nanomedicine 3:467–469PubMedGoogle Scholar
  20. Chaikof EL, Matthew H, Kohn J et al (2002) Biomaterials and scaffolds in reparative medicine. Ann NY Acad Sci 961:96–105PubMedGoogle Scholar
  21. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018PubMedGoogle Scholar
  22. Chan WCW, Maxwell DJ, Gao X et al (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotech 13:40–46PubMedGoogle Scholar
  23. Chen G, Ushida T, Tateishi T (2000) Hybrid biomaterials for tissue engineering: A preparative method for PLA or PLGA-collagen hybrid sponges. Adv Mater 12:455–457Google Scholar
  24. Chen VJ, Ma PX (2004) Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials 25:2065–2073PubMedGoogle Scholar
  25. Chen VJ, Ma PX (2006) The effect of surface area on the degradation rate of nano-fibrous poly(l-lactic acid) foams. Biomaterials 27:3708–3715PubMedGoogle Scholar
  26. Chiti F, Stefani M, Taddei N et al (2003) Rationalization of the effects of mutations on peptide andprotein aggregation rates. Nature 424:805–808PubMedGoogle Scholar
  27. Chiu JB, Luu YK, Fang D et al (2005) Electrospun nanofibrous scaffolds for biomedical applications. J Biomed Nanotechnol 1:115–132Google Scholar
  28. Chong EJ, Phan TT, Lim IJ et al (2007) Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater 3:321–330PubMedGoogle Scholar
  29. Chung T-W, Wang Y-Z, Huang Y-Y et al (2006) Poly (ε-caprolactone) grafted with nano-structured chitosan enhances growth of human dermal fibroblasts. Artif Organs 30:35–41PubMedGoogle Scholar
  30. Clarke KI, Graves SE, Wong ATC et al (1993) Investigation into the formation and mechanical properties of a bioactive material based on collagen and calcium phosphate. J Mater Sci Mater Med 4:107–110Google Scholar
  31. Corot C, Robert P, Idée J-M et al (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504PubMedGoogle Scholar
  32. Cui B, Wu C, Chen L et al (2007) One at a time, live tracking of NGF axonal transport using quantum dots. Proc Natl Acad Sci USA 104:13666–13671PubMedGoogle Scholar
  33. Daar AS, Greenwood HL (2007) A proposed definition of regenerative medicine. J Tissue Eng Regen Med 1:179–184PubMedGoogle Scholar
  34. Dahan M, Lévi S, Luccardini C et al (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–445PubMedGoogle Scholar
  35. De La Luz Sierra M, Yang F, Narazaki M et al (2004) Differential processing of stromal-derived factor-1alpha and stromal-derived factor-1beta explains functional diversity. Blood 103:2452–2459Google Scholar
  36. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18Google Scholar
  37. Du C, Cui FZ, Zhu XD et al (1999) Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater Res A 44:407–415Google Scholar
  38. Dubertret B, Skourides P, Norris DJ et al (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762PubMedGoogle Scholar
  39. Elsdale T, Bard J (1972) Collagen substrata for studies on cell behavior. J Cell Biol 54:626–637PubMedGoogle Scholar
  40. Engel E, Michiardi A, Navarro M et al (2008) Nanotechnology in regenerative medicine: the materials side. Trends Biotechnol 26:39–47PubMedGoogle Scholar
  41. Ergun C, Liu HN, Webster TJ et al (2008) Increased osteoblast adhesion on nanoparticulate calcium phosphates with higher ca/p ratios. J Biomed Mater Res A 85A:236–241Google Scholar
  42. Fields GB, Lauer JL, Dori Y et al (1998) Proteinlike molecular architecture: Biomaterial applications for inducing cellular receptor binding and signal transduction. Peptide Sci 47:143–151Google Scholar
  43. Fong H, Chun I, Reneker DH (1999) Beaded nanofibers formed during electrospinning. Polymer 40:4585–4592Google Scholar
  44. Freyman T, Polin G, Osman H et al (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 27:1114–1122PubMedGoogle Scholar
  45. Furlani D, Li W, Pittermann E et al (2009) A transformed cell population derived from cultured mesenchymal stem cells has no functional effect after transplantation into the injured heart. Cell Transplant 18:319–331PubMedGoogle Scholar
  46. Gao X, Cui Y, Levenson RM et al (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976PubMedGoogle Scholar
  47. Gentleman E, Nauman EA, Dee KC et al (2004) Short collagen fibers provide control of contraction and permeability in fibroblast-seeded collagen gels. Tissue Eng 10:421–427PubMedGoogle Scholar
  48. Gentleman E, Nauman EA, Livesay GA et al (2006) Collagen composite biomaterials resist contraction while allowing development of adipocytic soft tissue in vitro. Tissue Eng 12:1639–1649PubMedGoogle Scholar
  49. Ghoroghchian PP, Frail PR, Susumu K et al (2005) Near-infrared-emissive polymersomes: Self-assembled soft matter for in vivo optical imaging. Proc Natl Acad Sci USA 102:2922–2927PubMedGoogle Scholar
  50. Gong Y, Ma Z, Gao C et al (2006) Specially elaborated thermally induced phase separation to fabricate poly(L-lactic acid) scaffolds with ultra large pores and good interconnectivity. J Appl Polym Sci 101:3336–3342Google Scholar
  51. Gong Y, Ma Z, Zhou Q et al (2008) Poly(lactic acid) scaffold fabricated by gelatin particle leaching has good biocompatibility for chondrogenesis. J Biomater Sci Polym Ed 19:207–221PubMedGoogle Scholar
  52. Grinnell F, Bennett MH (1982) Ultrastructural studies of cell-collagen interactions. Method Enzymol 82A:535–544Google Scholar
  53. Groman EV, Bouchard JC, Reinhardt CP et al (2007) Ultrasmall mixed ferrite colloids as multidimensional magnetic resonance imaging, cell labeling, and cell sorting agents. Bioconjugate Chem 18:1763–1771Google Scholar
  54. Gu H, Zheng R, Zhang X et al (2004) Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: A conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc 126:5664–5665PubMedGoogle Scholar
  55. Harrison BS (2008). Applicatins of nanotechnology. In Principles of regenerative medicine, A. Atala, R. Lanza, R. Nerem, and J.A. Thomson, eds. (New York, Academic).Google Scholar
  56. Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294:1684–1688PubMedGoogle Scholar
  57. Hay ED (1991). Cell biology of extra cellular matrix (New York, Plenum).Google Scholar
  58. He W, Ma Z, Yong T et al (2005) Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials 26:7606–7615PubMedGoogle Scholar
  59. Hong Y, Legge RL, Zhang S et al (2003) Effect of amino acid sequence and pH on nanofiber formation of self-assembling peptides EAK16-II and EAK16-IV. Biomacromolecules 4:1433-1442PubMedGoogle Scholar
  60. Hong Z, Zhang P, He C et al (2005) Nano-composite of poly(l-lactide) and surface grafted hydroxyapatite: Mechanical properties and biocompatibility. Biomaterials 26:6296–6304PubMedGoogle Scholar
  61. Huang L, McMillan RA, Apkarian RP et al (2000) Generation of synthetic elastin-mimetic small diameter fibers and fiber networks. Macromolecules 33:2989–2997Google Scholar
  62. Huang L, Nagapudi K, Apkarian RP et al (2001) Engineered collagen: PEO nanofibers and fabrics. J Biomater Sci Polym Ed 12:979–993PubMedGoogle Scholar
  63. Ishii D, Kinbara K, Ishida Y et al (2003) Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. Nature 423:628–632PubMedGoogle Scholar
  64. Itoh S, Kikuchi M, Takakuda K et al (2001) The biocompatibility and osteoconductive activity of a novel hydroxyapatite/collagen composite biomaterial, and its function as a carrier of rhBMP-2. J Biomed Mater Res A 54:445–453Google Scholar
  65. Itoh S, Kikuchi M, Koyama Y et al (2004) Development of a hydroxyapatite/collagen nanocomposite as a medical device. Cell Transplant 13:451–461Google Scholar
  66. Jain KK (2008). Regenerative medicine and tissue engineering. In The Handbook of Nanomedicine, K.K. Jain, ed. (Totowa, Humana Press).Google Scholar
  67. Jaiswal JK, Mattoussi H, Mauro JM et al (2002) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51PubMedGoogle Scholar
  68. Jaleel MA, Tsai AC, Sarkar S et al (2004) Stromal cell-derived factor-1 (SDF-1) signalling regulates human placental trophoblast cell survival. Mol Hum Reprod 10:901–909PubMedGoogle Scholar
  69. Jiang H, Hu Y, Li Y et al (2005) A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J Control Release 108:237–243PubMedGoogle Scholar
  70. Josephson L, Tung C-H, Moore A et al (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates. Bioconjugate Chem 10:186–191Google Scholar
  71. Khang D, Carpente J, Chun YW et al (2010). Nanotechnology for regenerative medicine. Biomed Microdevices 12:575–587Google Scholar
  72. Kim J-s, Reneker DH (1999) Mechanical properties of composites using ultrafine electrospun fibers. Polym Compos 20:124–131Google Scholar
  73. Kiritsy CP, Lynch SE (1993) Role of growth factors in cutaneous wound healing: A review. Crit Rev Oral Biol Med 4:729–760PubMedGoogle Scholar
  74. Kisiday J, Jin M, Kurz B et al (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair. Proc Natl Acad Sci USA 99: 9996–10001PubMedGoogle Scholar
  75. Klopsch C, Furlani D, Gabel R et al (2009) Intracardiac injection of erythropoietin induces stem cell recruitment and improves cardiac functions in a rat myocardial infarction model. J Cell Mol Med 13:664–679PubMedGoogle Scholar
  76. Koch AM, Reynolds F, Kircher MF et al (2003) Uptake and metabolism of a dual fluorochrome Tat-nanoparticle in HeLa cells. Bioconjugate Chem 14 1115–1121Google Scholar
  77. Kohler N, Fryxell GE, Zhang M (2004) A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J Am Chem Soc 126:7206–7211PubMedGoogle Scholar
  78. Kostura L, Kraitchman DL, Mackay AM et al (2004) Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed 17:513–517PubMedGoogle Scholar
  79. Kothapalli CR, Shaw MT, Wei M (2005) Biodegradable HA-PLA 3-D porous scaffolds: Effect of nano-sized filler content on scaffold properties. Acta Biomater 1:653–662PubMedGoogle Scholar
  80. Kuntz R, Saltzman W (1997) Neutrophil motility in extracellular matrix gels: mesh size and adhesion affect speed of migration. Biophys J 72:1472–1480PubMedGoogle Scholar
  81. Kwon IK, Park KD, Choi SW et al (2001) Fibroblast culture on surface-modified poly (glycolide-co-ε-caprolactone) scaffold for soft tissue regeneration. J Biomater Sci Polym Ed 12:1147–1160PubMedGoogle Scholar
  82. Kwon IK, Kidoaki S, Matsuda T (2005) Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials 26:3929–3939PubMedGoogle Scholar
  83. Kwon IK, Matsuda T (2005) Co-electrospun nanofiber fabrics of poly(l-lactide-co-ε-caprolactone) with type I collagen or heparin. Biomacromolecules 6:2096–2105PubMedGoogle Scholar
  84. Larson DR, Zipfel WR, Williams RM et al (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436PubMedGoogle Scholar
  85. Layrolle P, Daculsi G (2006) Nanostructured biomaterials. Nanomedicine 1:493–494Google Scholar
  86. Lemon BI, Crooks RM (2000) Preparation and characterization of dendrimer-encapsulated CdS semiconductor quantum dots. J Am Chem Soc 122:12886–12887Google Scholar
  87. Lewin M, Carlesso N, Tung C-H et al (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414PubMedGoogle Scholar
  88. Lewis JD, Destito G, Zijlstra A et al (2006) Viral nanoparticles as tools for intravital vascular imaging. Nat Med 12:354–360PubMedGoogle Scholar
  89. Lewus KE, Nauman EA (2005) In vitro characterization of a bone marrow stem cell-seeded collagen gel composite for soft tissue grafts: effects of fiber number and serum concentration. Tissue Eng 11:1015–1022PubMedGoogle Scholar
  90. Li M, Mondrinos MJ, Gandhi MR et al (2005) Electrospun protein fibers as matrices for tissue engineering. Biomaterials 26:5999–6008PubMedGoogle Scholar
  91. Li W-J, Laurencin CT, Caterson EJ et al (2002) Electrospun nanofibrous structure: A novel scaffold for tissue engineering. J Biomed Mater Res A 60:613–621Google Scholar
  92. Li W, Ma  N, Ong LL et al (2007a) Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 25:2118–2127PubMedGoogle Scholar
  93. Li W, Nesselmann C, Zhou Z et al (2007b) Gene delivery to the heart by magnetic nanobeads. J Magn Magn Mater 311:336–341Google Scholar
  94. Li W, Ma  N, Ong LL et al (2008) Enhanced thoracic gene delivery by magnetic nanobead-mediated vector. J Gene Med 10:897–909PubMedGoogle Scholar
  95. Liao SS, Cui FZ, Zhang W et al (2004) Hierarchically biomimetic bone scaffold materials: Nano-HA/collagen/PLA composite. J Biomed Mater Res B 68B:158–165Google Scholar
  96. Lidke DS, Nagy P, Heintzmann R et al (2004) Quantum dot ligands provide new insights into erbB/HER receptor  −  mediated signal transduction. Nat Biotechnol 22:198–203PubMedGoogle Scholar
  97. Liu H, Webster TJ (2007) Nanomedicine for implants: A review of studies and necessary experimental tools. Biomaterials 28:354–369Google Scholar
  98. Luu YK, Kim K, Hsiao BS et al (2003) Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Control Release 89:341–353PubMedGoogle Scholar
  99. Ma  L, Gao C, Mao Z et al (2003) Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24:4833–4841PubMedGoogle Scholar
  100. Ma  L, Zhou J, Gao C et al (2007) Incorporation of basic fibroblast growth factor by a layer-by-layer assembly technique to produce bioactive substrates. J Biomed Mater Res B 83B:285–292Google Scholar
  101. Ma  N, Stamm C, Kaminski A et al (2005a) Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice. Cardiovasc Res 66:45–54PubMedGoogle Scholar
  102. Ma Z, Kotaki M, Inai R et al (2005b) Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng 11:101–109PubMedGoogle Scholar
  103. Ma Z, Gao C, Gong Y et al (2005c) Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor. Biomaterials 26:1253–1259PubMedGoogle Scholar
  104. Mao Z, Ma  L, Zhou J et al (2005) Bioactive thin film of acidic fibroblast growth factor fabricated by layer-by-layer assembly. Bioconjugate Chem 16:1316–1322Google Scholar
  105. Martin GE, Cockshott ID (1977). A product comprising a mat of fibers prepared by electrostatically spinning an organic material and collecting the spun fibers on a suitable receiver, I.C.I. Limited, ed. (US)Google Scholar
  106. Mastrobattista E, van-der-Aa MAEM, Hennink WE et al (2006) Artificial viruses: a nanotechnological approach to gene delivery. Nat Rev Drug Discov 5:115–121PubMedGoogle Scholar
  107. Matthews JA, Wnek GE, Simpson DG et al (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238PubMedGoogle Scholar
  108. Matthews JA, Boland ED, Wnek GE et al (2003) Electrospinning of collagen type II: A feasibility study. J Bioact Compat Pol 18,:125–134Google Scholar
  109. Maysinger D, Behrendt M, Lalancette-Hébert M et al (2007) Real-time imaging of astrocyte response to quantum dots: in vivo screening model system for biocompatibility of nanoparticles. Nano Lett 7:2513–2520PubMedGoogle Scholar
  110. McIntyre JO, Fingleton B, Wells KS et al (2004) Development of a novel fluorogenic proteolytic beacon for in vivo detection and imaging of tumour-associated matrix metalloproteinase-7 activity. Biochem J 377:617–628PubMedGoogle Scholar
  111. McQuibban GA, Butler GS, Gong JH et al (2001) Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 276:43503–43508PubMedGoogle Scholar
  112. Mikos AG, Thorsen AJ, Czerwonka LA et al (1994) Preparation and characterization of poly(L-lactic acid) foams. Polymer 35:1068–1077Google Scholar
  113. Miller DC, Thapa A, Haberstroh KM et al (2004) Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features. Biomaterials 25:53–61PubMedGoogle Scholar
  114. Miller DC, Haberstroh KM, Webster TJ (2007) PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion. J Biomed Mater Res A 81A:678–684Google Scholar
  115. Moghimi SM, Hunter AC (2000) Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends Biotechnol 18:412–420PubMedGoogle Scholar
  116. Mooney DJ, Baldwin DF, Suh NP et al (1996) Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17:1417–1422PubMedGoogle Scholar
  117. Mulder WJM, Koole R, Brandwijk RJ et al (2006) Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett 6:1–6PubMedGoogle Scholar
  118. Murugan R, Ramakrishna S (2007) Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Eng 13:1845–1866PubMedGoogle Scholar
  119. Nam YS, Park TG (1999a) Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res A 47:8–17Google Scholar
  120. Nam YS, Park TG (1999b) Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials 20:1783–1790PubMedGoogle Scholar
  121. Nam YS, Yoon JJ, Park TG (2000) A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res B 53:1–7Google Scholar
  122. Niemeyer CM, Ceyhan B (2001) DNA-directed functionalization of colloidal gold with proteins. Angew Chem Int Edit 40:3685–3688Google Scholar
  123. Papisov MI, Bogdanov A, Schaffer B et al (1993) Colloidal magnetic resonance contrast agents: effect of particle surface on biodistribution. J Magn Magn Mater 122:383–386Google Scholar
  124. Parak WJ, Boudreau R, Le-Gros M et al (2002) Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 14:882–885Google Scholar
  125. Peterson JT, Li H, Dillon L et al (2000) Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat. Cardiovasc Res 46:307–315PubMedGoogle Scholar
  126. Ramachandran GN (1988) Stereochemistry of collagen. Int J Pept Proteins Res 31:1–16Google Scholar
  127. Rao J, Dragulescu-Andrasi A, Yao H (2007) Fluorescence imaging in vivo: recent advances. Curr Opin Biotech 18:17–25PubMedGoogle Scholar
  128. Reddy ST, Rehor A, Schmoekel HG et al (2006) In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Control Release 112:26–34PubMedGoogle Scholar
  129. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223Google Scholar
  130. Rhyner MN, Smith AM, Gao X et al (2006) Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomedicine 1:209–217PubMedGoogle Scholar
  131. Rogach A, Kershaw SV, Burt M et al (1999) Colloidally prepared HgTe nanocrystals with strong room-temperature infrared luminescence. Adv Mater 11:552–555Google Scholar
  132. Rovira A, Bareille R, Lopez I et al (1993) Preliminary report on a new composite material made of calcium phosphate, elastin peptides and collagens J Mater Sci Mater Med 4:372–380Google Scholar
  133. Sasaki T, Iwasaki N, Kohno K et al (2008) Magnetic nanoparticles for improving cell invasion in tissue engineering. J Biomed Mater Res A 86A:969–978Google Scholar
  134. Schaffer BK, Linker C, Papisov M et al (1993) MION-ASF: biokinetics of an MR receptor agent. Magn Reson Imaging 11:411–417PubMedGoogle Scholar
  135. Schellenberger EA, Bogdanov AJ, Högemann D et al (2002) Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI. Mol Imaging 1:102–107PubMedGoogle Scholar
  136. Schellenberger EA, Sosnovik D, Weissleder R et al (2004) Magneto/optical annexin V, a multimodal protein. Bioconjugate Chem 15:1062–1067Google Scholar
  137. Shah BS, Clark PA, Moioli EK et al (2007) Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett 7:3071–3079PubMedGoogle Scholar
  138. Silva GA, Czeisler C, Niece KL et al (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355PubMedGoogle Scholar
  139. Simon SR (1994). Orthopaedic basic science (Rosemont, American Academy of Orthopaedic Surgeons).Google Scholar
  140. So M-K, Xu C, Loening AM et al (2006) Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 24:339–343PubMedGoogle Scholar
  141. Solanki A, Kim JD, Lee K-B (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine 3:567–578PubMedGoogle Scholar
  142. Soto CM, Blum AS, Vora GJ et al (2006) Fluorescent signal amplification of carbocyanine dyes using engineered viral nanoparticles. J Am Chem Soc 128:5184–5189PubMedGoogle Scholar
  143. Stitzel J, Liu J, Lee SJ et al (2006) Controlled fabrication of a biological vascular substitute. Biomaterials 27:1088–1094PubMedGoogle Scholar
  144. Strom SC, Michalopoulos G (1982) Collagen as a substrate for cell growth and differentiation. Method Enzymol 82A:544–555Google Scholar
  145. Sun C, Sze R, Zhang M (2006) Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res A 78A:550–557Google Scholar
  146. Sun Z, Zussman E, Yarin AL et al (2003) Compound core-shell polymer nanofibers by co-electrospinning. Adv Mater 15:1929–1932Google Scholar
  147. Tabata Y (2003) Tissue regeneration based on growth factor release. Tissue Eng 9:S5–S15PubMedGoogle Scholar
  148. Tampieri A, Celotti G, Landi E et al (2003) Biologically inspired synthesis of bone-like composite: Self-assembled collagen fibers/hydroxyapatite nanocrystals. J Biomed Mater Res A 67A:618–625Google Scholar
  149. Taniguchi N (1974). On the basic concept of ‘nano-technology’. In Proceedings of the International Conference of Production Engineering (Tokyo), pp. 18–23.Google Scholar
  150. TenHuisen KS, Martin RI, Klimkiewicz M et al (1995) Formation and properties of a synthetic bone composite: Hydroxyapatite-collagen. J Biomed Mater Res 29:803–810PubMedGoogle Scholar
  151. Thomas V, Dean DR, Vohra YK (2006a) Nanostructured biomaterials for regenerative medicine. Curr Nanosci 2:155–177Google Scholar
  152. Thomas V, Jagani S, Johnson K et al (2006b) Electrospun bioactive nanocomposite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering. J Nanosci Nanotechnol 6:487–493PubMedGoogle Scholar
  153. Thomas V, Dean DR, Jose MV et al (2007) Nanostructured biocomposite scaffolds based on collagen co-electrospun with nanohydroxyapatite. Biomacromolecules 8:631–637PubMedGoogle Scholar
  154. Thorek DLJ, Chen AK, Czupryna J et al (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34:23–38PubMedGoogle Scholar
  155. Vaccaro DE, Yang M, Weinberg JS et al (2008) Cell tracking using nanoparticles. J Cardiovasc Trans Res 1:217–220Google Scholar
  156. van-Tilborg GAF, Mulder WJM, Chin PTK et al (2006) Annexin A5-conjugated quantum dots with a paramagnetic lipidic coating for the multimodal detection of apoptotic cells. Bioconjugate Chem 17:865–868Google Scholar
  157. van Wachem PB, Plantinga JA, Wissink MJ et al (2001) In vivo biocompatibility of carbodiimide-crosslinked collagen matrices: Effects of crosslink density, heparin immobilization, and bFGF loading. J Biomed Mater Res 55:368–378PubMedGoogle Scholar
  158. Venugopal J, Ma LL, Yong T et al (2005) In vitro study of smooth muscle cells on polycaprolactone and collagen nanofibrous matrices. Cell Biol Int 29:861–867PubMedGoogle Scholar
  159. Verreck G, Chun I, Rosenblatt J et al (2003) Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. J Control Release 92:349–360PubMedGoogle Scholar
  160. Wang W, Li W, Ong LL et al (2010) Localized SDF-1alpha gene release mediated by collagen substrate induces CD117+ stem cell homing. J Cell Mol Med 14:392–402Google Scholar
  161. Wang W, Li W, Ong LL et al (2009) Localized and sustained SDF-1 gene release mediated by fibronectin films: A potential method for recruiting stem cells. Int J Artif Organs 32:141–149PubMedGoogle Scholar
  162. Webster TJ, Siegel RW, Bizios R (1999) Osteoblast adhesion on nanophase ceramics. Biomaterials 20:1221–1227PubMedGoogle Scholar
  163. Webster TJ (2001). Nanophase ceramics: the future orthopedic and dental implant material. In Nanostructured materials, J.Y.-R. Ying, ed. (New York, Academic)Google Scholar
  164. Webster TJ, Ejiofor JU (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25:4731–4739PubMedGoogle Scholar
  165. Wei G, Jin Q, Giannobile WV et al (2006) Nano-fibrous scaffold for controlled delivery of recombinant human PDGF-BB. J Control Release 112:103–110PubMedGoogle Scholar
  166. Wei G, Ma PX (2006) Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres. J Biomed Mater Res A 78A:306–315Google Scholar
  167. Wei G, Ma PX (2008) Nanostructured biomaterials for regeneration. Adv Funct Mater 18:3568–3582Google Scholar
  168. Weissleder R, Papisov M (1992) Pharmaceutical iron oxides for MR imaging. Rev Magn Reson Med 4:1–20Google Scholar
  169. Weissleder R, Bogdanov A, Neuwelt EA et al (1995) Long-circulating iron oxides for MR imaging. Adv Drug Deliv Rev 16:321–334Google Scholar
  170. Wentworth B, Stewart J, Westrich J et al (2007). Studies on the retention of cells delivered to the rat heart. Paper presented at: European Society of Cardiology Congress (Vienna, Austria).Google Scholar
  171. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421PubMedGoogle Scholar
  172. Winter JO, Liu TY, Korgel BA et al (2001) Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells. Adv Mater 13:1673–1677Google Scholar
  173. Wnek GE, Carr ME, Simpson DG et al (2003) Electrospinning of nanofiber fibrinogen structures. Nano Lett 3:213–216Google Scholar
  174. Wu C, Barnhill H, Liang X et al (2005) A new probe using hybrid virus-dye nanoparticles for near-infrared fluorescence tomography. Optics Comm 255:366–374Google Scholar
  175. Yang F, Murugan R, Ramakrishna S et al (2004a) Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25:1891–1900PubMedGoogle Scholar
  176. Yang XB, Bhatnagar RS, Li S et al (2004b) Biomimetic collagen scaffolds for human bone cell growth and differentiation. Tissue Eng 10:1148–1159PubMedGoogle Scholar
  177. Yao C, Slamovich EB, Webster TJ (2008) Enhanced osteoblast functions on anodized titanium with nanotube-like structures. J Biomed Mater Res A 85A:157–166Google Scholar
  178. Ye L, Huang X (2005) MAP2: multiple alignment of syntenic genomic sequences. Nucl Acids Res 33:162–170PubMedGoogle Scholar
  179. Yoshimoto H, Shin YM, Terai H et al (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077–2082PubMedGoogle Scholar
  180. Yu WW, Qu L, Guo W et al (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860Google Scholar
  181. Yu Y-C, Tirrell M, Fields GB (1998) Minimal lipidation stabilizes protein-like molecular architecture. J Am Chem Soc 120:9979–9987Google Scholar
  182. Yu Y-C, Roontga V, Daragan VA et al (1999) Structure and Dynamics of Peptide-Amphiphiles Incorporating Triple-Helical Proteinlike Molecular Architecture. Biochemistry 38:1659–1668PubMedGoogle Scholar
  183. Zaheer A, Lenkinski RE, Mahmood A et al (2001) In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat Biotechnol 19:1148–1154PubMedGoogle Scholar
  184. Zeng J, Chen X, Xu X et al (2003) Ultrafine fibers electrospun from biodegradable polymers. J Appl Polym Sci 89:1085–1092Google Scholar
  185. Zhang L, Webster TJ (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4:66–80Google Scholar
  186. Zhang R, Ma PX (1999) Poly(α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res A 44:446–455Google Scholar
  187. Zhang R, Ma PX (2000) Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures. J Biomed Mater Res A 52:430–438Google Scholar
  188. Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178PubMedGoogle Scholar
  189. Zhang Y, Huang Z-M, Xu X et al (2004) Preparation of core  −  shell structured PCL-r-gelatin bi-component nanofibers by coaxial electrospinning. Chem Mater 16:3406–3409Google Scholar
  190. Zhang Y, Ouyang H, Lim CT et al (2005a) Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B 72B:156–165Google Scholar
  191. Zhang YZ, Venugopal J, Huang Z-M et al (2005b) Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules 6:2583–2589PubMedGoogle Scholar
  192. Zhou Q, Gong Y, Gao C (2005) Microstructure and mechanical properties of poly(L-lactide) scaffolds fabricated by gelatin particle leaching method. J Appl Polym Sci 98:1373–1379Google Scholar
  193. Zong X, Kim K, Fang D et al (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43:4403–4412Google Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  1. 1.Department of Polymer Science and EngineeringZhejiang UniversityHangzhouChina
  2. 2.Department of Cardiac SurgeryUniversity of RostockRostockGermany

Personalised recommendations