Skip to main content

Liver Stem Cells

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

The liver is an essential organ for life, serving as the center for metabolism and playing various critical functions in controling systemic homeostasis. Among ­multiple types of cells comprising the liver, hepatocytes and cholangiocytes are the two epithelial cell lineages in the organ and commonly originate from hepatoblasts during organogenesis in the developing embryos. Thus, hepatoblasts possess bi-lineage differentiation potential into hepatocytes and cholangiocytes, a phenotypic feature that can best distinguish and define liver stem cells. Although the liver is considered not to rely on any resident stem cell population for their homeostatic maintenance, facultative stem/progenitor cells with the ­bi-lineage differentiation potential, referred to as oval cells in rodents, do emerge under severe damage ­conditions and contribute to the regenerative processes. Identification of specific markers has enabled researchers to isolate and characterize these fetal and adult stem/progenitor cell populations. In vitro culture ­systems as well as in vivo studies using animal models have been elucidating detailed molecular mechanisms, including intercellular signaling webs and ­intracellular transcriptional regulatory networks, that coordinately regulate development, differentiation and behavior of these cells. Understanding the ­cellular and molecular basis of liver development and regeneration from the ­perspective of the embryonic and adult stem/progenitor cells should make invaluable contributions to future development of technologies to produce fully functional hepatocytes in vitro that are applicable for cell therapy and ­pharmaceutical screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhurst B, Croager EJ, Farley-Roche CA, Ong JK, Dumble ML, Knight B, Yeoh GC (2001) A modified choline-deficient, ethionine-supplemented diet protocol effectively induces oval cells in mouse liver. Hepatology 34, 519–522.

    Article  CAS  PubMed  Google Scholar 

  • Antoniou A, Raynaud P, Cordi S, Zong Y, Tronche F, Stanger BZ, Jacquemin P, Pierreux CE, Clotman F, Lemaigre FP (2009) Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9. Gastroenterology 136, 2325–2333.

    Article  CAS  PubMed  Google Scholar 

  • Apte U, Thompson MD, Cui S, Liu B, Cieply B, Monga SP (2008) Wnt/beta-catenin signaling mediates oval cell response in rodents. Hepatology 47, 288–295.

    Article  CAS  PubMed  Google Scholar 

  • Basma H, Soto-Gutierrez A, Yannam GR, Liu L, Ito R, Yamamoto T, Ellis E, Carson SD, Sato S, Chen Y, Muirhead D, Navarro-Alvarez N, Wong RJ, Roy-Chowdhury J, Platt JL, Mercer DF, Miller JD, Strom SC, Kobayashi N, Fox IJ (2009) Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology 136, 990–999.

    Article  CAS  PubMed  Google Scholar 

  • Bisgaard HC, Parmelee DC, Dunsford HA, Sechi S, Thorgeirsson SS (1993) Keratin 14 protein in cultured nonparenchymal rat hepatic epithelial cells: characterization of keratin 14 and keratin 19 as antigens for the commonly used mouse monoclonal antibody OV-6. Molecular Carcinogenesis 7, 60–66.

    Article  CAS  PubMed  Google Scholar 

  • Bort R, Signore M, Tremblay K, Martinez Barbera JP, Zaret KS (2006) Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Developmental Biology 290, 44–56.

    Article  CAS  PubMed  Google Scholar 

  • Chen YR, Sekine K, Nakamura K, Yanai H, Tanaka M, Miyajima A (2009) Y-box binding ­protein-1 down-regulates expression of carbamoyl phosphate synthetase-I by suppressing CCAAT enhancer-binding protein-alpha function in mice. Gastroenterology 137, 330–340

    Article  CAS  PubMed  Google Scholar 

  • Clotman F, Lannoy VJ, Reber M, Cereghini S, Cassiman D, Jacquemin P, Roskams T, Rousseau GG, Lemaigre FP (2002) The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development 129, 1819–1828.

    CAS  PubMed  Google Scholar 

  • Clotman F, Jacquemin P, Plumb-Rudewiez N, Pierreux CE, Van der Smissen P, Dietz HC, Courtoy PJ, Rousseau GG, Lemaigre FP (2005) Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors. Genes & Development 19, 1849–1854.

    Article  CAS  Google Scholar 

  • Coffinier C, Gresh L, Fiette L, Tronche F, Schutz G, Babinet C, Pontoglio M, Yaniv M, Barra J (2002) Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1beta. Development 129, 1829–1838.

    CAS  PubMed  Google Scholar 

  • Costa RH, Kalinichenko VV, Holterman AX, Wang X (2003) Transcription factors in liver development, differentiation, and regeneration. Hepatology 38, 1331–1347.

    CAS  PubMed  Google Scholar 

  • Deutsch G, Jung J, Zheng M, Lora J, Zaret KS (2001) A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128, 871–881.

    CAS  PubMed  Google Scholar 

  • Dorrell C, Erker L, Lanxon-Cookson KM, Abraham SL, Victoroff T, Ro S, Canaday PS, Streeter PR, Grompe M (2008) Surface markers for the murine oval cell response. Hepatology 48, 1282–1291.

    Article  CAS  PubMed  Google Scholar 

  • Dunsford HA, Sell S (1989) Production of monoclonal antibodies to preneoplastic liver cell populations induced by chemical carcinogens in rats and to transplantable Morris hepatomas. Cancer Research 49, 4887–4893.

    CAS  PubMed  Google Scholar 

  • Engelhardt NV, Factor VM, Yasova AK, Poltoranina VS, Baranov VN, Lasareva MN (1990) Common antigens of mouse oval and biliary epithelial cells. Expression on newly formed hepatocytes. Differentiation; Research in Biological Diversity 45, 29–37.

    CAS  PubMed  Google Scholar 

  • Farber E (1956) Similarities in the sequence of early histological changes induced in the liver of the rat by ethionine, 2-acetylamino-fluorene, and 3’-methyl-4-dimethylaminoazobenzene. Cancer Research 16, 142–148.

    CAS  PubMed  Google Scholar 

  • Fausto N (2004) Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology 39, 1477–1487.

    Article  PubMed  Google Scholar 

  • Fellous TG, Islam S, Tadrous PJ, Elia G, Kocher HM, Bhattacharya S, Mears L, Turnbull DM, Taylor RW, Greaves LC, Chinnery PF, Taylor G, McDonald SA, Wright NA, Alison MR (2009) Locating the stem cell niche and tracing hepatocyte lineages in human liver. Hepatology 49, 1655–1663.

    Article  CAS  PubMed  Google Scholar 

  • Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I, Barshack I, Seijffers R, Kopolovic J, Kaiser N, Karasik A (2000) Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nature Medicine 6, 568–572.

    Article  CAS  PubMed  Google Scholar 

  • Floridon C, Jensen CH, Thorsen P, Nielsen O, Sunde L, Westergaard JG, Thomsen SG, Teisner B (2000) Does fetal antigen 1 (FA1) identify cells with regenerative, endocrine and neuroendocrine potentials? A study of FA1 in embryonic, fetal, and placental tissue and in maternal circulation. Differentiation; Research in Biological Diversity 66, 49–59.

    CAS  PubMed  Google Scholar 

  • Geisler F, Nagl F, Mazur PK, Lee M, Zimber-Strobl U, Strobl LJ, Radtke F, Schmid RM, Siveke JT (2008) Liver-specific inactivation of Notch2, but not Notch1, compromises intrahepatic bile duct development in mice. Hepatology 48, 607–616.

    Article  CAS  PubMed  Google Scholar 

  • Gouon-Evans V, Boussemart L, Gadue P, Nierhoff D, Koehler CI, Kubo A, Shafritz DA, Keller G (2006) BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nature Biotechnology 24, 1402–1411.

    Article  CAS  PubMed  Google Scholar 

  • Grompe M (2003) Pancreatic-hepatic switches in vivo. Mechanisms of Development 120, 99–106.

    Article  CAS  PubMed  Google Scholar 

  • Grozdanov PN, Yovchev MI, Dabeva MD (2006) The oncofetal protein glypican-3 is a novel marker of hepatic progenitor/oval cells. Laboratory Investigation; A Journal of Technical Methods and Pathology 86, 1272–1284.

    Article  CAS  PubMed  Google Scholar 

  • Hirose Y, Itoh T, Miyajima A (2009) Hedgehog signal activation coordinates proliferation and differentiation of fetal liver progenitor cells. Experimental Cell Research 315, 2648–2657.

    Article  CAS  PubMed  Google Scholar 

  • Hu M, Kurobe M, Jeong YJ, Fuerer C, Ghole S, Nusse R, Sylvester KG (2007) Wnt/beta-catenin signaling in murine hepatic transit amplifying progenitor cells. Gastroenterology 133, 1579–1591.

    Article  CAS  PubMed  Google Scholar 

  • Itoh T, Kamiya Y, Okabe M, Tanaka M, Miyajima A (2009) Inducible expression of Wnt genes during adult hepatic stem/progenitor cell response. FEBS Letters 583, 777–781.

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski A, Ambrose C, Parr M, Lincecum JM, Wang MZ, Zheng TS, Browning B, Michaelson JS, Baetscher M, Wang B, Bissell DM, Burkly LC (2005) TWEAK induces liver progenitor cell proliferation. The Journal of Clinical Investigation 115, 2330–2340.

    Article  CAS  PubMed  Google Scholar 

  • Jelnes P, Santoni-Rugiu E, Rasmussen M, Friis SL, Nielsen JH, Tygstrup N, Bisgaard HC (2007) Remarkable heterogeneity displayed by oval cells in rat and mouse models of stem cell-mediated liver regeneration. Hepatology 45, 1462–1470.

    Article  CAS  PubMed  Google Scholar 

  • Jensen CH, Jauho EI, Santoni-Rugiu E, Holmskov U, Teisner B, Tygstrup N, Bisgaard HC (2004) Transit-amplifying ductular (oval) cells and their hepatocytic progeny are characterized by a novel and distinctive expression of delta-like protein/preadipocyte factor 1/fetal antigen 1. The American Journal of Pathology 164, 1347–1359.

    Article  CAS  PubMed  Google Scholar 

  • Jung J, Zheng M, Goldfarb M, Zaret KS (1999) Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science 284, 1998–2003.

    Article  CAS  PubMed  Google Scholar 

  • Kamiya A, Gonzalez FJ (2004) TNF-alpha regulates mouse fetal hepatic maturation induced by oncostatin M and extracellular matrices. Hepatology 40, 527–536.

    Article  CAS  PubMed  Google Scholar 

  • Kamiya A, Kinoshita T, Ito Y, Matsui T, Morikawa Y, Senba E, Nakashima K, Taga T, Yoshida K, Kishimoto T, Miyajima A (1999) Fetal liver development requires a paracrine action of oncostatin M through the gp130 signal transducer. The EMBO Journal 18, 2127–2136.

    Article  CAS  PubMed  Google Scholar 

  • Kamiya A, Kojima N, Kinoshita T, Sakai Y, Miyajima A (2002) Maturation of fetal hepatocytes in vitro by extracellular matrices and oncostatin M: induction of tryptophan oxygenase. Hepatology 35, 1351–1359.

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Shin JS, Kim HJ, Fisher RC, Lee MJ, Kim CW (2007) Streptozotocin-induced diabetes can be reversed by hepatic oval cell activation through hepatic transdifferentiation and pancreatic islet regeneration. Laboratory Investigation; A Journal of Technical Methods and Pathology 87, 702–712.

    Article  CAS  PubMed  Google Scholar 

  • Kimura T, Christoffels VM, Chowdhury S, Iwase K, Matsuzaki H, Mori M, Lamers WH, Darlington GJ, Takiguchi M (1998) Hypoglycemia-associated hyperammonemia caused by impaired expression of ornithine cycle enzyme genes in C/EBPalpha knockout mice. The Journal of Biological Chemistry 273, 27505–27510.

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita T, Sekiguchi T, Xu MJ, Ito Y, Kamiya A, Tsuji K, Nakahata T, Miyajima A (1999) Hepatic differentiation induced by oncostatin M attenuates fetal liver hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America 96, 7265–7270.

    Google Scholar 

  • Knight B, Akhurst B, Matthews VB, Ruddell RG, Ramm GA, Abraham LJ, Olynyk JK, Yeoh GC (2007) Attenuated liver progenitor (oval) cell and fibrogenic responses to the choline deficient, ethionine supplemented diet in the BALB/c inbred strain of mice. Journal of Hepatology 46, 134–141.

    Article  CAS  PubMed  Google Scholar 

  • Kodama Y, Hijikata M, Kageyama R, Shimotohno K, Chiba T (2004) The role of notch signaling in the development of intrahepatic bile ducts. Gastroenterology 127, 1775–1786.

    Article  CAS  PubMed  Google Scholar 

  • Kojima N, Kinoshita T, Kamiya A, Nakamura K, Nakashima K, Taga T, Miyajima A (2000) Cell density-dependent regulation of hepatic development by a gp130-independent pathway. Biochemical and Biophysical Research Communications 277, 152–158.

    Article  CAS  PubMed  Google Scholar 

  • Kojima H, Fujimiya M, Matsumura K, Younan P, Imaeda H, Maeda M, Chan L (2003) NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nature Medicine 9, 596–603.

    Article  CAS  PubMed  Google Scholar 

  • Kubota H, Reid LM (2000) Clonogenic hepatoblasts, common precursors for hepatocytic and biliary lineages, are lacking classical major histocompatibility complex class I antigen. Proceedings of the National Academy of Sciences of the United States of America 97, 12132–12137.

    Google Scholar 

  • Kyrmizi I, Hatzis P, Katrakili N, Tronche F, Gonzalez FJ, Talianidis I (2006) Plasticity and expanding complexity of the hepatic transcription factor network during liver development. Genes & Development 20, 2293–2305.

    Article  CAS  Google Scholar 

  • Lee JS, Heo J, Libbrecht L, Chu IS, Kaposi-Novak P, Calvisi DF, Mikaelyan A, Roberts LR, Demetris AJ, Sun Z, Nevens F, Roskams T, Thorgeirsson SS (2006) A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nature Medicine 12, 410–416.

    Article  CAS  PubMed  Google Scholar 

  • Lemaigre FP (2009) Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology 137, 62–79.

    Article  CAS  PubMed  Google Scholar 

  • Li L, Krantz ID, Deng Y, Genin A, Banta AB, Collins CC, Qi M, Trask BJ, Kuo WL, Cochran J, Costa T, Pierpont ME, Rand EB, Piccoli DA, Hood L, Spinner NB (1997) Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nature Genetics 16, 243–251.

    Article  CAS  PubMed  Google Scholar 

  • Lozier J, McCright B, Gridley T (2008) Notch signaling regulates bile duct morphogenesis in mice. PloS One 3, e1851.

    Article  PubMed  Google Scholar 

  • Ludtke TH, Christoffels VM, Petry M, Kispert A (2009) Tbx3 promotes liver bud expansion during mouse development by suppression of cholangiocyte differentiation. Hepatology (Baltimore, MD) 49, 969–978.

    Article  PubMed  Google Scholar 

  • Margagliotti S, Clotman F, Pierreux CE, Beaudry JB, Jacquemin P, Rousseau GG, Lemaigre FP (2007) The Onecut transcription factors HNF-6/OC-1 and OC-2 regulate early liver expansion by controlling hepatoblast migration. Developmental Biology 311, 579–589.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Yoshitomi H, Rossant J, Zaret KS (2001) Liver organogenesis promoted by endothelial cells prior to vascular function. Science (New York, N.Y) 294, 559–563.

    Article  CAS  PubMed  Google Scholar 

  • Matthews VB, Yeoh GC (2005) Liver stem cells. IUBMB Life 57, 549–553.

    Article  CAS  PubMed  Google Scholar 

  • McCright B, Lozier J, Gridley T (2002) A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 129, 1075–1082.

    CAS  PubMed  Google Scholar 

  • McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, Spinner NB (2006) NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. American Journal of Human Genetics 79, 169–173.

    Article  CAS  PubMed  Google Scholar 

  • Michalopoulos GK, DeFrances MC (1997) Liver regeneration. Science 276, 60–66.

    Article  CAS  PubMed  Google Scholar 

  • Micsenyi A, Tan X, Sneddon T, Luo JH, Michalopoulos GK, Monga SP (2004) Beta-catenin is temporally regulated during normal liver development. Gastroenterology 126, 1134–1146.

    Article  CAS  PubMed  Google Scholar 

  • Newsome PN, Hussain MA, Theise ND (2004) Hepatic oval cells: helping redefine a paradigm in stem cell biology. Current Topics in Developmental Biology 61, 1–28.

    Article  CAS  PubMed  Google Scholar 

  • Nitou M, Sugiyama Y, Ishikawa K, Shiojiri N (2002) Purification of fetal mouse hepatoblasts by magnetic beads coated with monoclonal anti-e-cadherin antibodies and their in vitro culture. Experimental Cell Research 279, 330–343.

    Article  CAS  PubMed  Google Scholar 

  • Oda T, Elkahloun AG, Pike BL, Okajima K, Krantz ID, Genin A, Piccoli DA, Meltzer PS, Spinner NB, Collins FS, Chandrasekharappa SC (1997) Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nature Genetics 16, 235–242.

    Article  CAS  PubMed  Google Scholar 

  • Oertel M, Menthena A, Chen YQ, Teisner B, Jensen CH, Shafritz DA (2008) Purification of fetal liver stem/progenitor cells containing all the repopulation potential for normal adult rat liver. Gastroenterology 134, 823–832.

    CAS  PubMed  Google Scholar 

  • Okabe M, Tsukahara Y, Tanaka M, Suzuki K, Saito S, Kamiya Y, Tsujimura T, Nakamura K, Miyajima A (2009) Potential hepatic stem cells reside in EpCAM + cells of normal and injured mouse liver. Development 136, 1951–1960.

    Article  CAS  PubMed  Google Scholar 

  • Paku S, Schnur J, Nagy P, Thorgeirsson SS (2001) Origin and structural evolution of the early proliferating oval cells in rat liver. The American Journal of Pathology 158, 1313–1323.

    Article  CAS  PubMed  Google Scholar 

  • Preisegger KH, Factor VM, Fuchsbichler A, Stumptner C, Denk H, Thorgeirsson SS (1999) Atypical ductular proliferation and its inhibition by transforming growth factor beta1 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model for chronic alcoholic liver disease. Laboratory Investigation; A Journal of Technical Methods and Pathology 79, 103–109.

    CAS  PubMed  Google Scholar 

  • Roskams TA, Libbrecht L, Desmet VJ (2003) Progenitor cells in diseased human liver. Seminars in Liver Disease 23, 385–396.

    Article  CAS  PubMed  Google Scholar 

  • Rossi JM, Dunn NR, Hogan BL, Zaret KS (2001) Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes & Development 15, 1998–2009.

    Article  CAS  Google Scholar 

  • Rountree CB, Barsky L, Ge S, Zhu J, Senadheera S, Crooks GM (2007) A CD133-expressing murine liver oval cell population with bilineage potential. Stem Cells 25, 2419–2429.

    Article  CAS  PubMed  Google Scholar 

  • Sackett SD, Li Z, Hurtt R, Gao Y, Wells RG, Brondell K, Kaestner KH, Greenbaum LE (2009) Foxl1 is a marker of bipotential hepatic progenitor cells in mice. Hepatology 49, 920–929.

    Article  CAS  PubMed  Google Scholar 

  • Schmelzer E, Zhang L, Bruce A, Wauthier E, Ludlow J, Yao HL, Moss N, Melhem A, McClelland R, Turner W, Kulik M, Sherwood S, Tallheden T, Cheng N, Furth ME, Reid LM (2007) Human hepatic stem cells from fetal and postnatal donors. The Journal of Experimental Medicine 204, 1973–1987.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M, Gherardi E, Birchmeier C (1995) Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373, 699–702.

    Article  CAS  PubMed  Google Scholar 

  • Schrem H, Klempnauer J, Borlak J (2002) Liver-enriched transcription factors in liver function and development. Part I: the hepatocyte nuclear factor network and liver-specific gene expression. Pharmacological Reviews 54, 129–158.

    Article  CAS  PubMed  Google Scholar 

  • Schrem H, Klempnauer J, Borlak J (2004) Liver-enriched transcription factors in liver function and development. Part II: the C/EBPs and D site-binding protein in cell cycle control, carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liver-specific gene regulation. Pharmacological Reviews 56, 291–330.

    Article  CAS  PubMed  Google Scholar 

  • Sekine K, Chen YR, Kojima N, Ogata K, Fukamizu A, Miyajima A (2007) Foxo1 links insulin signaling to C/EBPalpha and regulates gluconeogenesis during liver development. The EMBO Journal 26, 3607–3615.

    Article  CAS  PubMed  Google Scholar 

  • Snykers S, De Kock J, Rogiers V, Vanhaecke T (2009) In vitro differentiation of embryonic and adult stem cells into hepatocytes: state of the art. Stem Cells 27, 577–605.

    Article  CAS  PubMed  Google Scholar 

  • Song YD, Lee EJ, Yashar P, Pfaff LE, Kim SY, Jameson JL (2007) Islet cell differentiation in liver by combinatorial expression of transcription factors neurogenin-3, BETA2, and RIPE3b1. Biochemical and Biophysical Research Communications 354, 334–339.

    Article  CAS  PubMed  Google Scholar 

  • Sosa-Pineda B, Wigle JT, Oliver G (2000) Hepatocyte migration during liver development requires Prox1. Nature Genetics 25, 254–255.

    Article  CAS  PubMed  Google Scholar 

  • Strick-Marchand H, Masse GX, Weiss MC, Di Santo JP (2008) Lymphocytes support oval ­cell-dependent liver regeneration. J Immunol 181, 2764–2771.

    CAS  PubMed  Google Scholar 

  • Suzuki A, Zheng Y, Kondo R, Kusakabe M, Takada Y, Fukao K, Nakauchi H, Taniguchi H (2000) Flow-cytometric separation and enrichment of hepatic progenitor cells in the developing mouse liver. Hepatology 32, 1230–1239.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Zheng YW, Kaneko S, Onodera M, Fukao K, Nakauchi H, Taniguchi H (2002) Clonal identification and characterization of self-renewing pluripotent stem cells in the developing liver. The Journal of Cell Biology 156, 173–184.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Iwama A, Miyashita H, Nakauchi H, Taniguchi H (2003) Role for growth factors and extracellular matrix in controlling differentiation of prospectively isolated hepatic stem cells. Development 130, 2513–2524.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Kanai Y, Hara T, Sasaki J, Sasaki T, Kohara M, Maehama T, Taya C, Shitara H, Yonekawa H, Frohman MA, Yokozeki T, Kanaho Y (2006) Crucial role of the small GTPase ARF6 in hepatic cord formation during liver development. Molecular and Cellular Biology 26, 6149–6156.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Sekiya S, Buscher D, Izpisua Belmonte JC, Taniguchi H (2008a) Tbx3 controls the fate of hepatic progenitor cells in liver development by suppressing p19ARF expression. Development 135, 1589–1595.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Sekiya S, Onishi M, Oshima N, Kiyonari H, Nakauchi H, Taniguchi H (2008b) Flow cytometric isolation and clonal identification of self-renewing bipotent hepatic progenitor cells in adult mouse liver. Hepatology 48, 1964–1978.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Tanaka M, Watanabe N, Saito S, Nonaka H, Miyajima A (2008c) p75 Neurotrophin receptor is a marker for precursors of stellate cells and portal fibroblasts in mouse fetal liver. Gastroenterology 135, 270–281 e273.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Hirabayashi Y, Sekiguchi T, Inoue T, Katsuki M, Miyajima A (2003) Targeted disruption of oncostatin M receptor results in altered hematopoiesis. Blood 102, 3154–3162.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Okabe M, Suzuki K, Kamiya Y, Tsukahara Y, Saito S, Miyajima A (2009) Mouse hepatoblasts at distinct developmental stages are characterized by expression of EpCAM and DLK1: drastic change of EpCAM expression during liver development. Mechanisms of Development 126, 665–676.

    Article  CAS  PubMed  Google Scholar 

  • Tang DQ, Lu S, Sun YP, Rodrigues E, Chou W, Yang C, Cao LZ, Chang LJ, Yang LJ (2006) Reprogramming liver-stem WB cells into functional insulin-producing cells by persistent expression of Pdx1- and Pdx1-VP16 mediated by lentiviral vectors. Laboratory Investigation; A Journal of Technical Methods and Pathology 86, 83–93.

    Article  CAS  PubMed  Google Scholar 

  • Tanimizu N, Miyajima A (2004) Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors. Journal of Cell Science 117, 3165–3174.

    Article  CAS  PubMed  Google Scholar 

  • Tanimizu N, Miyajima A (2007) Molecular mechanism of liver development and regeneration. International Review of Cytology 259, 1–48.

    Article  CAS  PubMed  Google Scholar 

  • Tanimizu N, Tsujimura T, Takahide K, Kodama T, Nakamura K, Miyajima A (2004) Expression of Dlk/Pref-1 defines a subpopulation in the oval cell compartment of rat liver. Gene Expr Patterns 5, 209–218.

    Article  CAS  PubMed  Google Scholar 

  • Wang ND, Finegold MJ, Bradley A, Ou CN, Abdelsayed SV, Wilde MD, Taylor LR, Wilson DR, Darlington GJ (1995) Impaired energy homeostasis in C/EBP alpha knockout mice. Science 269, 1108–1112.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Grompe M (2003) The origin and liver repopulating capacity of murine oval cells. Proceedings of the National Academy of Sciences of the United States of America 100 Suppl 1, 11881–11888.

    Google Scholar 

  • Wang AY, Ehrhardt A, Xu H, Kay MA (2007) Adenovirus transduction is required for the correction of diabetes using Pdx-1 or Neurogenin-3 in the liver. Mol Ther 15, 255–263.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Nakagawa K, Ohata S, Kitagawa D, Nishitai G, Seo J, Tanemura S, Shimizu N, Kishimoto H, Wada T, Aoki J, Arai H, Iwatsubo T, Mochita M, Watanabe T, Satake M, Ito Y, Matsuyama T, Mak TW, Penninger JM, Nishina H, Katada T (2002) SEK1/MKK4-mediated SAPK/JNK signaling participates in embryonic hepatoblast proliferation via a pathway different from NF-kappaB-induced anti-apoptosis. Developmental Biology 250, 332–347.

    CAS  PubMed  Google Scholar 

  • Weinstein M, Monga SP, Liu Y, Brodie SG, Tang Y, Li C, Mishra L, Deng CX (2001) Smad proteins and hepatocyte growth factor control parallel regulatory pathways that converge on beta1-integrin to promote normal liver development. Molecular and Cellular Biology 21, 5122–5131.

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Li S, Hatch H, Ahrens K, Cornelius JG, Petersen BE, Peck AB (2002) In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proceedings of the National Academy of Sciences of the United States of America 99, 8078–8083.

    Google Scholar 

  • Yang W, Yan HX, Chen L, Liu Q, He YQ, Yu LX, Zhang SH, Huang DD, Tang L, Kong XN, Chen C, Liu SQ, Wu MC, Wang HY (2008) Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Research 68, 4287–4295.

    Article  CAS  PubMed  Google Scholar 

  • Yechoor V, Liu V, Espiritu C, Paul A, Oka K, Kojima H, Chan L (2009) Neurogenin3 is sufficient for transdetermination of hepatic progenitor cells into neo-islets in vivo but not transdifferentiation of hepatocytes. Developmental Cell 16, 358–373.

    Article  CAS  PubMed  Google Scholar 

  • Yovchev MI, Grozdanov PN, Joseph B, Gupta S, Dabeva MD (2007) Novel hepatic progenitor cell surface markers in the adult rat liver. Hepatology 45, 139–149.

    Article  CAS  PubMed  Google Scholar 

  • Yovchev MI, Zhang J, Neufeld DS, Grozdanov PN, Dabeva MD (2009) Thymus cell antigen-1-expressing cells in the oval cell compartment. Hepatology 50, 601–611.

    Article  CAS  PubMed  Google Scholar 

  • Zajicek G, Oren R, Weinreb M, Jr. (1985) The streaming liver. Liver 5, 293–300.

    CAS  PubMed  Google Scholar 

  • Zalzman M, Gupta S, Giri RK, Berkovich I, Sappal BS, Karnieli O, Zern MA, Fleischer N, Efrat S (2003) Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells. Proceedings of the National Academy of Sciences of the United States of America 100, 7253–7258.

    Google Scholar 

  • Zhao R, Duncan SA (2005) Embryonic development of the liver. Hepatology 41, 956–967.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Itoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Itoh, T., TanakaTanaka, M., Miyajima, A. (2011). Liver Stem Cells. In: Steinhoff, G. (eds) Regenerative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9075-1_14

Download citation

Publish with us

Policies and ethics