Skip to main content

Current Research of the RAS in Pancreatitis and Pancreatic Cancer

  • Chapter
  • First Online:
The Renin-Angiotensin System: Current Research Progress in The Pancreas

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 690))

Abstract

A local RAS exists in several cell types of the pancreas, which exhibits both exocrine and endocrine activities, and this functional local RAS is responsive to various physiological and pathophysiological stimuli (see Chapter 6). Of particular interest in this context are the expression and localization of key RAS components in the acinar and endothelial cells of the exocrine pancreas; these RAS components are subject to upregulation in response to chronic hypoxia and acute pancreatitis (AP). In this regard, an enhanced sensitivity of angiotensin II-mediated vasoconstriction in pancreatic microcirculation could trigger severe ischemia and/or hypoxia conditions, which result in oxidative stress-induced expression of proinflammatory factors, ultimately leading to pancreatic cell inflammation and injury. Indeed, recent investigations have demonstrated that inhibition of RAS activation supports amelioration of pancreatic oxidative stress and tissue injury in experimentally induced AP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez A and Sanz MJ. Reactive oxygen species mediate angiotensin II-induced leukocyte-endothelial cell interactions in vivo. J Leukoc Biol 70:199–206, 2001.

    PubMed  CAS  Google Scholar 

  • Amaya K, Ohta T, Kitagawa H, Kayahara M, Takamura H, Fujimura T, Nishimura G, Shimizu K and Miwa K. Angiotensin II activates MAP kinase and NF-kappaB through angiotensin II type I receptor in human pancreatic cancer cells. Int J Oncol 25:849–856, 2004.

    PubMed  CAS  Google Scholar 

  • Anandanadesan R, Gong Q, Chipitsyna G, Witkiewicz A, Yeo CJ and Arafat HA. Angiotensin II induces vascular endothelial growth factor in pancreatic cancer cells through an angiotensin II type 1 receptor and ERK1/2 signaling. J Gastrointest Surg 12:57–66, 2008.

    Article  PubMed  Google Scholar 

  • Arafat HA, Gong Q, Chipitsyna G, Rizvi A, Saa CT and Yeo CJ. Antihypertensives as novel antineoplastics: angiotensin-I-converting enzyme inhibitors and angiotensin II type 1 receptor blockers in pancreatic ductal adenocarcinoma. J Am Coll Surg 204:996–1005, 2007.

    Article  PubMed  Google Scholar 

  • Arrieta O, Guevara P, Escobar E, García-Navarrete R, Pineda B and Sotelo J. Blockage of angiotensin II type I receptor decreases the synthesis of growth factors and induces apoptosis in C6 cultured cells and C6 rat glioma. Br J Cancer 92:1247–1252, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Babior BM. NADPH oxidase: an update. Blood 93:1464–1476, 1999.

    PubMed  CAS  Google Scholar 

  • Beckman JS and Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:C1424–C1437, 1996.

    PubMed  CAS  Google Scholar 

  • Bendall JK, Cave AC, Heymes C, Gall N and Shah AM. Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105:293–296, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Bhatia M, Slavin J, Cao Y, Basbaum AI and Neoptolemos JP. Preprotachykinin-A gene deletion protects mice against acute pancreatitis and associated lung injury. Am J Physiol 284:G830–G836, 2003.

    CAS  Google Scholar 

  • Bhatia M, Brady M, Zagorski J, Christmas SE, Campbell F, Neoptolemos JP and Slavin J. Treatment with neutralising antibody against cytokine induced neutrophil chemoattractant (CINC) protects rats against acute pancreatitis associated lung injury. Gut 47:838–844, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Büchler P, Reber HA, Büchler MW, Friess H and Hines OJ. VEGF-RII influences the prognosis of pancreatic cancer. Ann Surg 236:738–749, 2002.

    Article  PubMed  Google Scholar 

  • Chan YC and Leung PS. Involvement of redox-sensitive extracellular-regulated kinases in angiotensin II-induced interleukin-6 expression in pancreatic acinar cells. J Pharmacol Exp Ther 329:450–458, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Chan YC. The novel role of angiotensin II in acute pancreatitis. PhD thesis, The Chinese University of Hong Kong, 2008.

    Google Scholar 

  • Chan YC and Leung PS. Angiotensin II type 1 receptor-dependent nuclear factor-κB activation-mediated proinflammatory actions in a rat model of obstructive acute pancreatitis. J Pharmacol Exp Ther 323:10–18, 2007a.

    Article  PubMed  CAS  Google Scholar 

  • Chan YC and Leung PS. Acute pancreatitis: animal models and recent advances in basic research. Pancreas 34:1–14, 2007b.

    Article  PubMed  Google Scholar 

  • Chan YC and Leung PS. AT1 receptor antagonism ameliorates acute pancreatitis-associated pulmonary injury. Regul Pept 134:46–53, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Chan WP, Fung ML, Nobiling R and Leung PS. Activation of local renin-angiotensin system by chronic hypoxia in rat pancreas. Mol Cell Endocrinol 160:107–114, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Chappell MC, Millsted A, Diz DI, Brosnihan Kb and Ferrario CM. Evidence for an intrinsic RAS in the canine pancreas. J Hypertens 9:751–759, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Chappell MC, Diz DI and Jacobsen DW. Pharmacological characterization of Ang II binding sites in pancreas. Peptides 14:311–318, 1992.

    Google Scholar 

  • Czakó L, Takács T, Varga IS, Tiszlavicz L, Hai DQ, Hegyi P, Matkovics B and Lonovics J. Oxidative stress in distant organs and the effects of allopurinol during experimental acute pancreatitis. Int J Pancreatol 27:209–216, 2000.

    Article  PubMed  Google Scholar 

  • Dang PM, Morel F, Gougerot-Pocidalo MA and El Benna J. Phosphorylation of the NADPH oxidase component p67(PHOX) by ERK2 and P38MAPK: selectivity of phosphorylated sites and existence of an intramolecular regulatory domain in the tetratricopeptide-rich region. Biochemistry 42:4520–4526, 2003.

    Article  PubMed  CAS  Google Scholar 

  • De Gasparo M and Siragy HM. The AT2 receptor: fact, fancy and fantasy. Regul Pept 81:11–24, 1999.

    Article  PubMed  Google Scholar 

  • De Gasparo M, Catt KJ, Inagami T, Wright JW and Unger T. The angiotensin II receptors. Pharmacol Rev 52:415–472, 2000.

    PubMed  Google Scholar 

  • De Gasparo M. Angiotensin II and nitric oxide interaction. Heart Fail Rev 7:347–358, 2002.

    Article  PubMed  Google Scholar 

  • Deplanque G and Harris AL. Anti-angiogenic agents: clinical trial design and therapies in development. Eur J Cancer 36:1713–1724, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Deshayes F and Nahmias C. Angiotensin receptors: a new role in cancer? Trends Endocrinol Metab 16:293–299, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Dijkhorst-Oei LT, Stroes ES, Koomans HA and Rabelink TJ. Acute simultaneous stimulation of nitric oxide and oxygen radicals by angiotensin II in humans in vivo. J Cardiovasc Pharmacol 33:420–424, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Egami K, Murohara T, Shimada T, Sasaki K, Shintani S, Sugaya T, Ishii M, Akagi T, Ikeda H, Matsuishi T and Imaizumi T. Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. J Clin Invest 112:67–75, 2003.

    PubMed  CAS  Google Scholar 

  • El Bekay R, Alvarez M, Monteseirín J, Alba G, Chacón P, Vega A, Martin-Nieto J, Jiménez J, Pintado E, Bedoya FJ and Sobrino F. Oxidative stress is a critical mediator of the angiotensin II signal in human neutrophils: involvement of mitogen-activated protein kinase, calcineurin, and the transcription factor NF-kappaB. Blood 102:662–671, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Ferreri NR, Escalante BA, Zhao Y, An SJ and McGiff JC. Angiotensin II induces TNF production by the thick ascending limb: functional implications. Am J Physiol 274:F148–F155, 1998.

    PubMed  CAS  Google Scholar 

  • Folch-Puy E, García-Movtero A, Iovanna JL, Dagorn JC, Prats N, Vaccaro MI and Closa D. The pancreatitis-associated protein induces lung inflammation in the rat through activation of TNFalpha expression in hepatocytes. J Pathol 199:398–408, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto Y, Sasaki T, Tsuchida A and Chayama K. Angiotensin II type 1 receptor expression in human pancreatic cancer and growth inhibition by angiotensin II type 1 receptor antagonist. FEBS Lett 495:197–200, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Ghiani BU and Masini MA. Angiotensin II binding sites in the rat pancreas and their modulation after sodium loading and depletion. Comp Biochem Physiol 111A:439–444, 1995.

    Article  CAS  Google Scholar 

  • Granell S, Gironella M, Bulbena O, Panés J, Mauri M, Sabater L, Aparisi L, Gelpí E and Closa D. Heparin mobilizes xanthine oxidase and induces lung inflammation in acute pancreatitis. Crit Care Med 31:525–530, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Grewal HP, Mohey el Din A, Gaber L, Kotb M and Gaber AO. Amelioration of the physiologic and biochemical changes of acute pancreatitis using anti-TNP-alpha polyclonal antibody. Am J Surg 167:214–219, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Griendling KK, Sorescu D and Ushio-Fukai M. NADPH oxidase: role in cardiovascular biology and disease. Circ Res 86:494–501, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Gupta VK, Jaskowiak NT, Beckett MA, Mauceri HJ, Grunstein J, Johnson RS, Calvin DA, Nodzenski E, Pejovic M, Kufe DW, Posner MC and Weichselbaum RR. Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer J 8:47–54, 2002.

    Article  PubMed  Google Scholar 

  • Hanahan D and Weinberg RA. The hallmarks of cancer. Cell 100:57–70, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Heath DI, Cruickshank A, Gudgeon M, Jehanli A, Shenkin A and Imrie CW. Role of interleukin-6 in mediating the acute phase protein response and potential as an early means of severity assessment in acute pancreatitis. Gut 34:41–45, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Ichiki T. Role of cAMP response element binding protein in cardiovascular remodeling: good, bad, or both? Arterioscler Thromb Vasc Biol 26:449–455, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Igase M, Kohara K, Nagai T, Miki T and Ferrario CM. Increased expression of angiotensin converting enzyme 2 in conjunction with reduction of neointima by angiotensin II type 1 receptor blockade. Hypertens Res 31:553–559, 2008.

    Article  PubMed  Google Scholar 

  • Ip SP, Chan YW and Leung PS. Effects of chronic hypoxia on the circulating and pancreatic RAS. Pancreas 25:296–300, 2002.

    Article  PubMed  Google Scholar 

  • Ip SP, Kwan PC, Williams CH, Pang S, Hooper NM and Leung PS. Changes of angiotensin-converting enzyme activity in the pancreas of chronic hypoxia and acute pancreatitis. Int J Biochem Cell Biol 35:944–954, 2003a.

    Article  PubMed  CAS  Google Scholar 

  • Ip SP, Tsang SW, Wong TP, Che CT and Leung PS. Saralasin, a non-specific angiotensin II receptor antagonist, attenuates oxidative stress and tissue injury in cerulein-induced acute pancreatitis. Pancreas 26:224–229, 2003b.

    Article  PubMed  CAS  Google Scholar 

  • Jaimes EA, Galceran JM and Raij L. Ang II induces superoxide anion production by mesangial cells. Kidney Int 54:775–784, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Jiang B, Xu S, Hou X, Pimentel DR, Brecher P and Cohen RA. Temporal control of NF-kappaB activation by ERK differentially regulates interleukin-1beta-induced gene expression. J Biol Chem 279:1323–1329, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Juillerat-Jeanneret L Celerier J, Chapuis Bernasconi C, Nguyen G, Wostl W, Maerki HP Janzer RC, Corvol P and Gasc JM. Renin and angiotensinogen expression and functions in growth and apoptosis of human glioblastoma. Br J Cancer 90:1059–1068, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Kalra D, Sivasubramanian N and Mann DL. Angiotensin II induces tumor necrosis factor biosynthesis in the adult mammalian heart through a protein kinase C-dependent pathway. Circulation 105:2198–2205, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Kelm M, Dahmann R, Wink D and Feelisch M. The nitric oxide/superoxide assay. J Biol Chem 272:9922–9932, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Kintscher U, Wakino S, Kim S, Fleck E, Hsueh WA and Law RE. Angiotensin II induces migration and Pyk2/paxillin phosphorylation of human monocytes. Hypertension 37:587–593, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Knoefel WT, Kollias N, Warshaw AL, Waldner H, Nishioka NS and Rattner DW. Pancreatic microcirculatory changes in experimental pancreatitis of graded severity in rat. Surgery 116:904–913, 1994.

    PubMed  CAS  Google Scholar 

  • Korc M. Pathways for aberrant angiogenesis in pancreatic cancer. Mol Cancer 7:2–8, 2001.

    Google Scholar 

  • Kuno A, Yamada T, Masuda K, Ogawa K, Sogawa M, Nakamura S, Nakazawa T, Ohara H, Nomura T, Joh T, Shirai T and Itoh M. Angiotensin-converting enzyme inhibitor attenuates pancreatic inflammation and fibrosis in male Wistar Bonn/Kobori rats. Gastroenterology 124:1010–1019, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Kuroda M, Oka T, Oka Y, Yamochi T, Ohtsubo K, Mori S, Watanabe T, Machinami R and Ohnishi S. Colocalization of vascular endothelial growth factor (vascular permeability factor) and insulin in pancreatic islet cells. J Clin Endocrinol Metab 80:3196–3200, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara K, Sasaki T, Kuwada Y, Murakami M, Yamasaki S and Chayama K. Expressions of angiogenic factors in pancreatic ductal carcinoma: a correlative study with clinicopathologic parameters and patient survival. Pancreas 26:344–349, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Lam KY. The pancreatic renin-angiotensin system: does it play a role in endocrine oncology. J Pancreas 2:40–42, 2001.

    CAS  Google Scholar 

  • Lam KY and Leung PS. Regulation and expression of a renin-angiotensin system in human pancreas and pancreatic endocrine tumours. Eur J Endocrinol 146:567–572, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Laquente B, Lacasa C, Ginesta MM, Casanovas O, Figueras A, Galan M, Ribas IG, Germa JR, Capella G and Vinals F. Antiangiogenic effect of gemcitabine following metronomic administration in a pancreas cancer model. Mol Cancer Ther 7:638–647, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Lau ST and Leung PS. Role of the RAS in pancreatic cancer. Curr Cancer Drug Targets (in press), 2010.

    Google Scholar 

  • Leung PS, Chan HC, Fu LX and Wong PY. Localization of AT1 and AT2 receptors in the pancreas of rodents. J Endocrinol 153:269–274, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Leung PS, Chan HC and Wong PY. Immunohistochemical localization of Ang II in the mouse pancreas. Histochem J 30:21–25, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Leung PS, Chan WP, Wong TP and Sernia C. Expression and localization of the RAS in the rat pancreas. J Endocrinol 160:13–19, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Leung PS, Chan WP and Nobiling R. Regulated expression of pancreatic RAS in experimental pancreatitis. Mol Cell Endocrinol 166:121–128, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Leung PS and Carlsson PO. Tissue renin-angiotensin system: its expression, localization, regulation and potential role in the pancreas. J Mol Endocrinol 26:155–163, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Leung PS. Pancreatic RAS: a novel target for potential treatment of pancreatic diseases. J Pancreas 4:89–91, 2003.

    Google Scholar 

  • Leung PS and Chappell MC. A local pancreatic renin-angiotensin system: endocrine and exocrine roles. Int J Biochem Cell Biol 35:834–846, 2003.

    Google Scholar 

  • Leung PS. Roles of the renin-angiotensin system and its blockade in pancreatic inflammation. Int J Biochem Cell Biol 37:237–238, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Leung PS. The physiology of a local renin-angiotensin system in the pancreas. J Physiol 580:31–37, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Leung PS and Chan YC. Role of oxidative stress in pancreatic inflammation. Antioxid Redox Signal 11:135–165, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Lever AF, Hole DJ, Gillis CR, McCallum IR, McInnes GT, MacKinnon PL, Meredith PA, Murray LS, Reid JL and Robertson JW. Do inhibitors of angiotensin-I-converting enzyme protect against risk of cancer? Lancet 352:179–184, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Li JM and Shah AM. Mechanism of endothelial cell NADPH oxidase activation by angiotensin II. Role of the p47phox subunit. J Biol Chem 278:12094–12100, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Liu AM and Wong YH. Activation of nuclear factor-kappa B by somatostatin type 2 receptor in pancreatic acinar AR42J cells involves G-alpha 14 and multiple signaling components: a mechanism requiring protein kinase C, calmodulin-dependent kinase II, ERK, and c-Src. J Biol Chem 280:34617–34625, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Mizuiri S, Hemmi H, Arita M, Ohashi Y, Tanaka Y, Miyagi M, Sakai K, Ishikawa Y, Shibuya K, Hase H and Aikawa A. Expression of ACE and ACE2 in individuals with diabetic kidney disease and healthy controls. Am J Kidney Dis 51:613–623, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Murr MM, Yang J, Fier A, Kaylor P, Mastorides S and Norman JG. Pancreatic elastase induces liver injury by activating cytokine production within Kupffer cells via nuclear factor-Kappa B. J Gastrointest Surg 6:474–480, 2002.

    Article  PubMed  Google Scholar 

  • Muscella A, Greco S, Elia MG, Storelli C and Marsigliante S. Angiotensin II stimulation of Na+/K+ATPase activity and cell growth by calcium-independent pathway in MCF-7 breast cancer cells. J Endocrinol 173:315–323, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Ocaranza MP, Godoy I, Jalil JE, Varas M, Collantes P, Pinto M, Roman M, Ramirez C, Copaja M, Diaz-Araya G, Castro P and Lavandero S. Enalapril attenuates downregulation of angiotensin-converting enzyme 2 in the late phase of ventricular dysfunction in myocardial infarcted rat. Hypertension 48:572–578, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Pupilli C, Lasagni L, Romagnani P, Bellini F, Mannelli M, Misciglia N, Mavilia C, Vellei U, Villari D and Serio M. Angiotensin II stimulates the synthesis and secretion of vascular permeability factor/vascular endothelial growth factor in human mesangial cells. J Am Soc Nephrol 10:245–255, 1999.

    PubMed  CAS  Google Scholar 

  • Raizada MK and Ferreira AJ. ACE2: a new target for cardiovascular disease therapeutics. J Cardiovasc Pharmacol 50:112–119, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Rau B, Bauer A, Wang A, Gansauge F, Weidenbach H, Nevalainen T, Poch B, Beger HG and Nussler AK. Modulation of endogenous nitric oxide synthase in experimental acute pancreatitis: role of anti-ICAM-1 and oxygen free radical scavengers. Ann Surg 233:195–203, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Rivera E, Arrieta O, Guevara P, Duarte-Rojo A and Sotelo J. AT1 receptor is present in glioma cells: its blockage reduces the growth of rat glioma. Br J Cancer 85:1396–1399, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Sano M, Fukuda K, Sato T, Kawaguchi H, Suematsu M, Matsuda S, Koyasu S, Matsui H, Yamauchi-Takihara K, Harada M, Saito Y and Ogawa S. ERK and p38 MAPK, but not NF-kappaB, are critically involved in reactive oxygen species-mediated induction of IL-6 by angiotensin II in cardiac fibroblasts. Circ Res 89:661–669, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Schieffer B, Luchtefeld M, Braun S, Hilfiker A, Hilfiker-Kleiner D and Drexler H. Role of NAD(P)H oxidase in angiotensin II-induced JAK/STAT signaling and cytokine induction. Circ Res 87:1195–1201, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Schulz HU, Niederau C, Klonowski-Stumpe H, Halangk W, Luthen R and Lippert H. Oxidative stress in acute pancreatitis. Hepatogastroenterology 46:2736–2750, 1999.

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V and Egido J. Inflammation and angiotensin II. Int J Biochem Cell Biol 35:881–900, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Tahmasebi M, Puddefoot JR, Inwang ER and Vinson GP. Tissue renin-angiotensin system in human pancreas. J Endocrinol 161:317–322, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Takeda H and Kondo S. Differences between squamous cell carcinoma and keratoacanthoma in angiotensin type-1 receptor expression. Am J Pathol 158:1633–1637, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Tamarat R, Silvestre JS, Durie M and Levy BI. Angiotensin II angiogenic effect in vivo involves vascular endothelial growth factor- and inflammation-related pathways. Lab Invest 82:747–756, 2002.

    PubMed  CAS  Google Scholar 

  • Tanifuji C, Suzuki Y, Geot WM, Horikoshi S, Sugaya T, Ruiz-Ortega M, Egido J and Tomino Y. Reactive oxygen species-mediated signaling pathways in angiotensin II-induced MCP-1 expression of proximal tubular cells. Antioxid Redox Signal 7:1261–1268, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Telek G, Regöly-Mérei J, Kovács GC, Simon L, Nagy Z and Hamar J, Jakab F. The first histological demonstration of pancreatic oxidative stress in human acute pancreatitis. Hepatogastroenterology 48:1252–1258, 2001.

    PubMed  CAS  Google Scholar 

  • Tsang SW, Ip SP, Wong TP, Che CT and Leung PS. Differential effects of saralasin and ramiprilat, the inhibitors of renin-angiotensin system, on cerulein-induced acute pancreatitis. Regul Pept 111:47–53, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Tsang SW, Ip SP and Leung PS. Prophylactic and therapeutic treatments with AT1 and AT2 receptor antagonists and their effects on changes in the severity of pancreatitis. Int J Biochem Cell Biol 36:330–339, 2004a.

    Article  PubMed  CAS  Google Scholar 

  • Tsang SW, Cheng CH and Leung PS. The role of the pancreatic renin-angiotensin system in acinar digestive enzyme secretion and in acute pancreatitis. Regul Pept 119:213–219, 2004b.

    Article  PubMed  CAS  Google Scholar 

  • Uemura H, Ishiguro H, Nakaigawa N, Nagashima Y, Miyoshi Y, Fujinami K, Sakaguchi A and Kubota Y. Angiotensin II receptor blocker shows antiproliferative activity in prostate cancer cells: a possibility of tyrosine kinase inhibitor of growth factor. Mol Cancer Ther 2:1139–1147, 2003.

    PubMed  CAS  Google Scholar 

  • Viedt C, Soto U, Krieger-Brauer HI, Fei J, Elsing C, Kübler W and Kreuzer J. Differential activation of mitogen-activated protein kinases in smooth muscle cells by angiotensin II: involvement of p22phox and reactive oxygen species. Arterioscler Thromb Vasc Biol 20:940–948, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Alam G, Zagariya A, Gidea C, Pinillos H, Lalude O, Choudhary G, Oezatalay D and Uhal BD. Apoptosis of lung epithelial cells in response to TNF-alpha requires angiotensin II generation de novo. J Cell Physiol 18:253–259, 2000.

    Article  Google Scholar 

  • Wang G, Lai FM, Lai KB, Chow KM, Kwan CH, Li KT and Szeto CC. Urinary mRNA expression of ACE and ACE2 in human type 2 diabetic nephropathy. Diabetologia 51:1062–1067, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Williams B, Baker AQ, Gallacher B and Lodwick D. Angiotensin II increases vascular permeability factor gene expression by human vascular smooth muscle cells. Hypertension 25:913–917, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka K, Saluja AK, Brown GE, Yamaguchi Y, Hofbauer B and Steer ML. Protective effects of prostaglandin E1 on acute lung injury of caerulein-induced acute pancreatitis in rats. Am J Physiol 272:G23–G30, 1997.

    PubMed  CAS  Google Scholar 

  • Yoshiji H, Kuriyama S and Fukui H. Angiotensin-I-converting enzyme inhibitors may be an alternative anti-angiogenic strategy in the treatment of liver fibrosis and hepatocellular carcinoma. Possible role of vascular endothelial growth factor. Tumour Biol 23:348–356, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Galardi E, Duquette M, Lawler J and Parangi S. Antiangiogenic treatment with three thrombospondin-1 type 1 repeats vs. gemcitabine in an orthotopic human pancreatic cancer model. Clin Cancer Res 11:5622–5630, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Zhang R, Yao W, Wang J, Qian A, Qiao M, Zhang Y and Yuan Y. Decreased expression of angiotensin-converting enzyme 2 in pancreatic ductal adenocarcinoma is associated with tumor progression. Tohoku J Exp Med 217:123–131, 2009.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po Sing Leung PhD .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Leung, P.S. (2010). Current Research of the RAS in Pancreatitis and Pancreatic Cancer. In: The Renin-Angiotensin System: Current Research Progress in The Pancreas. Advances in Experimental Medicine and Biology, vol 690. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9060-7_10

Download citation

Publish with us

Policies and ethics