Skip to main content

Brucella Species Synchronize Their Life Cycle to the Gestation Cycle of Their Ruminant Hosts

  • Conference paper
  • First Online:

Abstract

Brucellosis is a zoonostic disease caused by Gram negative Brucella species bacteria. B. melitensis, B. abortus and B. suis cause third trimester abortions in sheep and goats, cattle and swine, respectively. Serological diagnosis, in the past century, was based upon measurements of agglutinins and complement fixing antibodies while current state of art techniques include ELISA and fluorescence polarization. Our data show that following abortion or normal parturition, Brucella are secreted in the milk of lactating animals prior to development of a detectable humoral response, thereby reducing the reliability of serological diagnosis as the cornerstone of eradication programs. Accordingly, we hypothesized that infection starts as a clandestine invasion of the host by Brucella where, by some as yet unrecognized mechanism, the organisms manage to evade the immune response. Pregnancy then exerts physiological changes on the brucellae organisms that activate their virulence properties, allowing invasion and colonization of the trophoblasts in the third trimester, causing abortion and spread of the organisms to the external environment. Changes in the virulence properties of the bacteria within the blood stream also trigger their invasion of and propagation in the mammary glands, sustaining their secretion in the milk. These dual characteristics of Brucella’s stealth invasion of the host on one hand, and escape via abortive or secretion pathways on the other, demonstrate a unique virulence pattern specifically attainable due to the synchronization of their life cycle to the animal’s gestation cycle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander, B., Schnurrenberger P. R. & Brown R. R. (1981) Numbers of Brucella abortus in the placenta, umbilicus and fetal fluid of two naturally infected cows. Vet Rec, 108, 500.

    Article  PubMed  CAS  Google Scholar 

  • Alton, G. G. & Corner, L. A. (1981) Vaccination of heifers with a reduced dose of Brucella abortus strain 19 vaccine before first mating. Aust Vet J, 57, 548–50.

    Article  PubMed  CAS  Google Scholar 

  • Alton, G. G., Jones, L. M., Angus, R. D. & Verger, J. M. (1988) Techniques for the brucellosis laboratory. Institut National De La Recherche Agronomique, Paris.

    Google Scholar 

  • Banai, M. (2002) Control of small ruminant brucellosis by use of Brucella melitensis Rev.1 vaccine: laboratory aspects and field applications. Vet Micobiol, 90, 497–519.

    Article  CAS  Google Scholar 

  • Barqueiro-Calvo, E., Chaves-Olarte, E., Weiss, D. S., Guzmán-Verri, C., Chacon-Diaz, A., Rucavado, A., Moriyon, I. & Moreno, E. (2007) Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS ONE 2(7), e631.

    Article  Google Scholar 

  • Barqueiro-Calvo, E., Conde-Alvarez, R., Chacón-Diaz, C., Quesada-Lobo, L., Martirosyan, A., Guzmán-Verri, C., Iriarte, M., Mancek-Keber, M., Jeral, R., Gorvel, J. -P., Moriyón, I, Moreno, E. & Chaves-Olarte, E. (2009) The differential interaction of Brucella and Ochrobactrum with innate immunity reveals traits related to the evolution of stealthy pathogens. PLoS ONE 4(6), e5893.

    Article  Google Scholar 

  • Buck, J. M. (1930) Studies of vaccination during calfhood to prevent bovine infectious abortion. J Agricul Res, 41, 667-89.

    Google Scholar 

  • Cardoso, P. G., Macedo, G. C., Azevedo, V. & Oliveira, S. C. (2006) Brucella spp. noncanonical LPS: structure, biosynthesis, and interaction with host immune system. Microbial Cell Fact, 5, 13.

    Article  Google Scholar 

  • Celli, J. & Gorvel, J. -P. (2004) Organelle roberry: Brucella interactions with the endoplasmic reticulum. Curr Opin Microbiol., 7, 93–7.

    Article  PubMed  CAS  Google Scholar 

  • Chain, P. S. G., Comerci, D. J., Tolmasky, M. E., Larimer, F. W., Malfatti, S. A., Vergez, L. M., Aguero, F., Land, M. L., Ugalde, R. A. & Garcia, E. (2005) Whole-genome analyses of speciation events in pathogenic Brucellae Infect Immun, 73, 8353–61.

    Article  PubMed  CAS  Google Scholar 

  • Corbel, M. J. (1997) Brucellosis: an overview. Emerg Infect Dis, 3, 213–21.

    Article  PubMed  CAS  Google Scholar 

  • Delvecchio, V. G., Kapatral, V., Redkar, R. J., Patra, G., Mujer, C., Los, T., Ivanova, N., Anderson, I., Bhattacharyya, A., Lykidis, A., Reznik, G., Jablonski, L., Larsen, N., D’souza, M., Bernal, A., Mazur, M., Goltsman, E., Selkov, E., Elzer, P. H., Hagius, S., O’callaghan, D., Letesson, J. J., Haselkorn, R., Kyrpides, N. & Overbeek, R. (2002) The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc Natl Acad Sci USA, 99, 443–8.

    Article  PubMed  CAS  Google Scholar 

  • Fensterbank, R., Pardon, P. & Marly, J. (1985) Vaccination of ewes by a single conjuctival administration of Brucella melitensis Rev. 1 vaccine. Ann Rech Vet, 16, 351–6.

    PubMed  CAS  Google Scholar 

  • Foster, J. T., Beckstrom-Sternberg, S. M., Pearson, T., Beckstrom-Sternberg, J. S., Chain, P. S. G., Roberto, F. F., Hnath, J., Brettin, T. & Keim, P. (2009) Whole-genome-based phylogeny and divergence of the genus Brucella J Bacteriol, 191, 2864–70.

    Article  CAS  Google Scholar 

  • Foster, G., Osterman, B. J., Godfroid, J., Jacques, I. & Cloeckaert, A. (2007) Brucella ceti sp. nov. and Brucella pinnipedialis sp. nov. for Brucella strains with cetaceans and seals as their preferred hosts. Intl J Sys Evol Microbiol, 57, 2688–93.

    Article  CAS  Google Scholar 

  • Gall, D. & Nielsen, K. (2004) Serological diagnosis of bovine brucellosis: a review of test performance and cost comparison. Revue Scientifique et Technique (The Office International des Epizooties, Paris) 23, 989–1002.

    CAS  Google Scholar 

  • Goldstein, J., Hoffman, T., Frasch, C., Lizzio, E. F., Beining, P. R., Hochstein, D., Lee, Y. L., Angus, R. D. & Golding, B. (1992) Lipopolysaccharide (LPS) from Brucella abortus is less toxic than that from Escherichia coli, suggesting the possible use of B. abortus or LPS from B. abortus as carrier in vaccines. Infect Immun, 60, 1385–9.

    PubMed  CAS  Google Scholar 

  • Gorvel, J. -P. (2008) Brucella: a Mr “Hide” converted into Dr Jekyll. Microbes Infect, 10, 1010–13.

    Article  PubMed  Google Scholar 

  • Hernandez-Mora, G., Gonzales-Barrientos, R., Morales, J. A., Chaves-Olarte, E., Guzman-Verri, C., Baqueiro-Calvo, E., De-Miguel, M. J., Marin, C. M., Blasco, J. M., & Moreno, E. (2008) Neurobrucellosis in stranded dolphins, Costa Rica. Emerg Infect Dis, 14, 1430–3.

    Article  PubMed  Google Scholar 

  • Herzberg, M. & Elberg, S. (1953) Immunization against Brucella infection 1. Isolation and characterization of a streptomycin-dependent mutant. J Bacteriol, 66, 585–99.

    PubMed  CAS  Google Scholar 

  • Herzberg, M. & Elberg, S. S. (1955) Immunization against Brucella infection. III. Response of mice and guinea pigs to injection of viable and nonviable suspensions of a streptomycin-dependent mutant of Brucella melitensis. J Bacteriol, 69, 432–5.

    PubMed  CAS  Google Scholar 

  • Herzberg, M., Elberg, S. S. & Meyer, K. F. (1953) Immunization against Brucella infection. II. Effectiveness of a streptomycin-dependent strain of Brucella. J Bacteriol, 66, 600–5.

    PubMed  CAS  Google Scholar 

  • Kumar, Y. & Valdivia, R. H. (2009) Leading a sheltered life: intracellular pathogens and maintenance of vacuolar compartments. Cell Host Microbe, 5, 593–1001.

    Article  PubMed  CAS  Google Scholar 

  • Lang, R., Banai, M., Lishner, M. & Rubinstein, E. (1995) Brucellosis. Intl J Antimicrob Agents, 5, 203–8.

    Article  CAS  Google Scholar 

  • Letesson, J. J., Tibor, A., Van Yynde, G., Wansard, V., Weynants, V., Denoel, P. & Saman, E. (1997) Humoral immune responses of Brucella-infected cattle, sheep, and goats to eight purified recombinant Brucella proteins in an indirect enzyme-linked immunosorbent assay. Clin Diagn Lab Immun, 4, 556–64.

    CAS  Google Scholar 

  • Madkour, M. M. (1989) Brucellosis. Butterworths, London, 294.

    Google Scholar 

  • Meador, V. P. & Deyoe, B. L. (1989) Intracellular localization of Brucella abortus in bovine placenta. Vet Pathol, 26, 513–15.

    Article  PubMed  CAS  Google Scholar 

  • Neta, A. V. C., Stynen, A. P. R., Paixäo, T. A., Miranda, K. L., Silva, F. L., Rouz, C. M., Tsolis, R. M., Everts, R. E., Lewin, H. A., Carvalho, A. F., Lage, A. P. & Santo, R. L. (2008) Modulation of the bovine trophoblastic innate immune response by Brucella abortus. Infect Immun, 76, 1897–907.

    Article  CAS  Google Scholar 

  • Nicoletti, P. (1980) The epidemiology of bovine brucellosis. Adv Vet Sci Comp Med, 24, 69–98.

    PubMed  CAS  Google Scholar 

  • Nielsen, K. & Ewalt, D. R. (2008) Bovine brucellosis. Manual of diagnostic tests and vaccines for terrestrial animals, 6th ed. Vol. 2, The Office International des Epizooties, Paris, pp. 624–59,

    Google Scholar 

  • Nielsen, K., Smith, P., Yu, W., Nicoletti, P., Elzer, P., Robles, C., Bermudez, R., Renteria, T., Moreno, F., Ruiz, A., Massengill, C., Muenks, Q., Jurgersen, G., Tollersrud, T., Samartino, L., Conde, S., Forbes, L., Gall, D., Perez, B., Rojas, X. & Minas, A. (2005) Towards single screening tests for brucellosis. Rev Sci Tec (The Office International des Epizooties, Paris) 24, 1027–38.

    CAS  Google Scholar 

  • Pappas, G., Akritidis, N., Bosilkovski, M. & Tsianos, E. (2005) Brucellosis. New Eng J Med, 352, 2325–36.

    Article  PubMed  CAS  Google Scholar 

  • Pei, J., Turse, J. E. & Ficht, T. A. (2008) Evidence of Brucella abortus OPS dictating uptake and restricting NF-κB activation in murine macrophages. Microbes Infect, 10, 582–90.

    Article  PubMed  CAS  Google Scholar 

  • Pizarro-Cerdá, J., Méresse, S., Parton, R. G., Van Der Goot, G., Sola-Landa, A., Lopez-Goñi, I., Moreno, E. & Gorvel, J. -P. (1998) Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect Immun, 66, 5711–24.

    PubMed  Google Scholar 

  • Rajashekara, G., Glasner, J. D., Glover, D. A. & Splitter, G. A. (2004) Comparative whole-genome hybridization reveals genomic islands in Brucella species. J Bacteriol, 186, 5040–51.

    Article  PubMed  CAS  Google Scholar 

  • Rambow-Larsen, A. A., Peterson, E. M., Gourley, C. R. & Splitter, G. A. (2009) Brucella regulators: self-control in a hostile environment. Trends Microbiol, 17, 371–77.

    Article  PubMed  CAS  Google Scholar 

  • Roop II R. M., Gains, J. M., Anderson, E. S., Caswell, C. C. & Martin, D. W. (2009) Survival of the fittest: how Brucella strains adapt to their intracellular niche in the host. Med Microbiol Immun, 198, 221–38.

    Article  Google Scholar 

  • Saegerman, C., De Waele, L., Gilson, D., Godfroid, J., Thiange, P., Michel, P., Limbourg, B., Vo T. K. -O., Limet, J., Letesson, J. -J. & Berkvens, D. (2004) Evaluation of three serum i-ELISAs using monoclonal antibodies and protein G as peroxidase conjugate for the diagnosis of bovine brucellosis. Vet Microbiol, 100, 91–105.

    Article  PubMed  CAS  Google Scholar 

  • Samartino, L. E. & Enright, F. M. (1993) Pathogenesis of abortion of bovine brucellosis. Comp Immunol Microbio. Infect Dis, 16, 95–101.

    Article  CAS  Google Scholar 

  • Scholz, H. C., Hubalek, Z., Sedláček, I., Vergnaud, G., Tomaso, H., Dahouk, S., Melzer, F., Kämpfer, P., Neubauer, H., Cloeckaert, A., Maquart, M., Zygmunt, M. S., Whatmore, A. M., Falsen, E., Bahn, P., Göllner, C., Pfeffer, M., Huber, B., Busse, H. -J. & Nöckler, K. (2008) Brucella microti sp. nov., isolated from the common vole Microtus arvalis. Intl J Sys Evol Microbiol, 58, 375–82.

    Article  CAS  Google Scholar 

  • Seleem, M. N., Boyle, S. M. & Sriranganathan, N. (2008) Brucella: a pathogen without classic virulence genes. Vet Microbiol, 129, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Smith, H., Williams, A. E., Pearce, J. H., Keppie, J., Harris-Smith, P. W., Fitz-George, R. B. & Witt, K. (1965) Foetal erythritol: a cause of the localization of Brucella abortus in bovine contagious abortion. Nature, 193, 47–9.

    Article  Google Scholar 

  • Sperry, J. F. & Robertson, D. C. (1975) Erythritol catabolism by Brucella abortus. J Bacteriol, 121, 619–30.

    PubMed  CAS  Google Scholar 

  • Stevens, M. G., Hennager, S. G., Olsen, S. C. & Cheville, N. F. (1994) Serologic responses in diagnostic tests for brucellosis in cattle vaccinated with Brucella abortus 19 or RB51. J Clin Microbiol, 32, 1065–6.

    PubMed  CAS  Google Scholar 

  • Swartz, T. E., Tseng, T. -S., Frederickson, M. A., Paris, G., Comerci, D. J., Rajashekara, G., Kim, J. -G., Mudgett, M. B., Splitter, G. A.., Ugalde, R. A., Goldbaum, F. A., Briggs, W. R. & Bogomolni, R. A. (2007) Blue-light-activated histidine kinases: two-component sensors in bacteria. Science, 317, 1090–93.

    Article  PubMed  CAS  Google Scholar 

  • Tsolis, R. M., Young, G. M., Solnic, J. V. & Bäumler, A. J. (2008) From bench to bedside: stealth of enteroinvasive pathogens. Nat Rev, 6, 883–92.

    Article  CAS  Google Scholar 

  • Wattam, A. R., Williams, K. P., Snyder, E. E., Almeida, N. F. Jr., Shukla, M., Dickerman, A. W., Crasta, O. R., Kenyon, R., Lu, J., Shallom, J. M., Yoo, H., Ficht, T. A., Tsolis, R. M., Munk, C., Tapia, R., Han, C. S., Detter, J. C., Bruce, D., Brettin, T. S., Sobral, B. W., Boyle, S. M. & Setubal, J. C. (2009) Analysis of ten Brucella genomes reveals evidence for horizontal gene transfer despite a preferred intracellular lifestyle. JBacteriol, 191, 3569–79.

    Article  CAS  Google Scholar 

  • Whatmore, A. M. (2009) Current understanding of the genetic diversity of Brucella, an expanding genus of zoonotic pathogens. Infect Genet Evol (doi: 10.1016/j.meegid. 2009.07.001).

    Google Scholar 

  • Whatmore, A. M., Perrett, L. L. & Mackmillan, A. P. (2007) Characterization of the genetic diversity of Brucella by multilocus sequencing. BMC Microbiol, 7, 34.

    Article  PubMed  Google Scholar 

  • Wright, A. E. & Smith, F. (1897) On the application of the serum test to the differential diagnosis of typhoid and Malta fever. Lancet, 1, 656.

    Google Scholar 

Download references

Acknowledgements

We are indebted to Klaus Nielsen and his team for conducting i-ELISA, c-ELISA and FPA on the serum samples. Work in the author’s laboratory was partly supported by Binational Agricultural Research and Development Grant US-3829-06 R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menachem Banai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Bardenstein, S., Banai, M. (2010). Brucella Species Synchronize Their Life Cycle to the Gestation Cycle of Their Ruminant Hosts. In: Shafferman, A., Ordentlich, A., Velan, B. (eds) The Challenge of Highly Pathogenic Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9054-6_14

Download citation

Publish with us

Policies and ethics