The Political Economy of Technoscience

  • Astrid Schwarz
  • Alfred Nordmann
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 274)


The paper considers how researchers manage matter and energy and how they negotiate space, surface area, and place. They are doing so either by accommodating themselves to limits or by seeking to overcome such limits. To describe this adequately we develop a notion of a political economy of science that follows the distinction by French philosopher Georges Bataille between restricted and general economics. We identify the first with sciences that are constituted by conservation laws whereas the second can be identified with the technosciences that appear to adopt a principle of non-conservation which is exemplified by the ambition to expand resources like “space” or “matter.” The image and theoretical representation of our blue planet is particularly suitable to follow this transgression because it embodies the ambivalence of conserving a limited whole by exceeding and surpassing it. While Heinrich Hertz or Thomas R. Malthus never leave the framework of strict accountancy and lawful nature, the promoters of nano- and ecotechnologies share the creative desire to design machinery, create artwork, expore the globe, or change society. They develop strategies of control that open up a boundless space of technical possibility.


Political Economy Ecological Footprint Conservation Principle General System Theory Space Travel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arendt, H. 1998. The Human Condition. Chicago, IL: University of Chicago Press, 2nd ed.Google Scholar
  2. Bachelard, G. 1968. The Philosophy of No: A Philosophy of the Scientific Mind. New York, NY: Orion Press.Google Scholar
  3. Barbera, S., and B. Cozzo. 2009. Ecodesign. Königswinter: Tandem-Verlag.Google Scholar
  4. Bataille, G. 1991. The Accursed Share, Volume 1: Consumption. New York, NY: Zone Books.Google Scholar
  5. Becker, C., M. Faber, K. Hertel, and R. Manstetten. 2007. Die unterschiedlichen Sichtweisen von Malthus und Wordsworth auf Mensch, Natur und Wirtschaft. In Jahrbuch Ökologische Ökonomik Bd 5: Soziale Nachhaltigkeit, eds. F. Beckenbach et al., 275–299. Marburg: Metropolis.Google Scholar
  6. Bensaude-Vincent, B. 1992. The balance: Between chemistry and politics. The Eighteenth Century 33(2):217–237.Google Scholar
  7. Blüm, V. 2003. Aquatic modules for biogenerative life support systems: Developmental aspects based on the space flight results of the C.E.B.A.S. mini-module. Advances in Space Research 31:1683–1691.CrossRefGoogle Scholar
  8. Boulding, K.E. 1966. The economics of the coming spaceship Earth. In Environmental Quality in a Growing Economy, ed. H. Jarrett, 3–14. Baltimore, MD: Johns Hopkins University Press.Google Scholar
  9. Bringezu, S. 2009. Sustainable Resource Management: Global Trends, Visions and Policies. Sheffield: Greenleaf Publishing.Google Scholar
  10. Calloway, D.H. 1965. Human Ecology in Space Flight: Proceedings of the First International Interdisciplinary Conference. New York, NY: New York Academy of Sciences, Interdisciplinary Communications Program.Google Scholar
  11. Calloway, D.H. 1967. Human Ecology in Space Flight II: Proceedings of the Second International Interdisciplinary Conference. New York, NY: New York Academy of Sciences, Interdisciplinary Communications Program.Google Scholar
  12. Cassirer, E. 1985. Symbol, Technik, Sprache. Hamburg: Meiner.Google Scholar
  13. Clarke, A.C. 1951. The Exploration of Space. New York, NY: Harper.Google Scholar
  14. Daston, L. 1995. The moral economy of science. Osiris 10:3–24.CrossRefGoogle Scholar
  15. Dietzel, D., C. Ritter et al., 2008. Frictional duality observed during nanoparticle sliding. Physical Review Letters 101(125505):1–4.Google Scholar
  16. Forman, P. 2007. The primacy of science in modernity, of technology in postmodernity, and of ideology in the history of technology. History and Technology 23:1–152.CrossRefGoogle Scholar
  17. Gray, W., and N.D. Rizzo (eds.). 1973. Unity Through Diversity. Festschrift for Ludwig von Bertalanffy. New York, NY, London, and Paris: Gordon and Breach Science Publishers.Google Scholar
  18. Hanrahan, J.S., and D. Bushnell. 1960. Space Biology: The Human Factors in Space Flight. New York, NY: Thames & Hudson.Google Scholar
  19. Hertz, H. 1997. An unpublished lecture by Heinrich Hertz: “On the energy balance of the Earth”. American Journal of Physics 65(1):36–45.CrossRefGoogle Scholar
  20. Hertz, H. 1999. Die Constitution der Materie. Berlin: Springer.Google Scholar
  21. Höhler, S. 2008. ‘Spaceship Earth’: Envisioning human habitats in the environmental age. Bulletin of the German Historical Institute No. 42:65–85.Google Scholar
  22. Höhler, S., and F. Luks (eds.). 2006. Beam us up, Boulding! 40 Jahre “Raumschiff Erde“: Themenheft zum 40. Jubiläum von Kenneth E. Bouldings “Operating Manual for Spaceship Earth” (1966). Vereinigung für Ökologische Ökonomie, Beiträge und Berichte Heft 7. Hamburg: VÖÖ.Google Scholar
  23. Holmes, F. 1989. Eighteenth-Century Chemistry as an Investigative Enterprise. Berkeley, CA: Office for History of Science and Technology, University of California at Berkeley.Google Scholar
  24. Hutchinson, G.E. 1948. Circular causal systems in Ecology. Annals of the New York Academy of Sciences 50:221–246.CrossRefGoogle Scholar
  25. Kind, D. 2005. Energie und Umwelt – Grundlagen unseres Lebens. HbE 16 (Ergänzungslieferung) Dezember 2005 1–22:6–10.Google Scholar
  26. Lavoisier, A. 1952. Traité Élémentaire de chimie. Chicago, IL: Encyclopaedia Britannica.Google Scholar
  27. Latour, B. 1990. The force and reason of experiment. In Experimental Inquiries. Historical, Philosophical and Social Studies of Experimentation in Science, ed. H. LeGrand, 49–80. Dordrecht, Boston, MA, and London: Kluwer.Google Scholar
  28. Levit, G.S. 2010. Looking at Russian ecology through the biosphere theory. In Ecology Revisited: Reflecting Concepts, Advancing Science, eds. A. Schwarz and K. Jax, Dordrecht: Springer.Google Scholar
  29. Lindeman, R.L. 1942. The trophic-dynamic aspect of ecology. Ecology 23:399–418.CrossRefGoogle Scholar
  30. Lovelock, J. 1996. The Gaia hypothesis. In Gaia in Action: Science of the Living Earth, ed. P. Bunyard, 15–33. Edinburgh: Floris.Google Scholar
  31. Mach, E. 1959. Analysis of Sensations. New York, NY: Dover.Google Scholar
  32. Malthus, T.R. 1798. An Essay on the Principle of Population, as It Affects the Future Improvement of Society. London: Macmillan & Co.Google Scholar
  33. Marquis de Sade, D.A.F. 1800 (2005) Eugénie de Franval. In The Marquis de Sade: The Crimes of Love, ed. D. Coward, 239–303. Oxford: Oxford University Press.Google Scholar
  34. Martin, B.R., and P. Nightingale (eds.). 2000. The Political Economy of Science, Technology and Innovation. Cheltenham and Northampton: Edward Elgar Publishing.Google Scholar
  35. Max Planck Gesellschaft. 2009. Expedition Zukunft: Science Express. Munich: Max Planck Gesellschaft.Google Scholar
  36. Meyerson, E. 1930. Identity and Reality. London: George Allen & Unwin.Google Scholar
  37. Mirowski, P. 2004. The Effortless Economy of Science. Durham, NC: Duke University Press.Google Scholar
  38. Mirowski, P., and E.M. Sent. 2002. Science Bought and Sold. Chicago, IL: The University of Chicago Press.Google Scholar
  39. Nordhaus, T., and M. Shellenberger. 2006. Break Through: From the Death of Environmentalism to the Politics of Possibility. Boston, MA: Houghton Mifflin Company.Google Scholar
  40. Nordmann, A. 2004. Nanotechnology’s worldview: New space for old cosmologies. Technology and Society Magazine IEEE 23:48–54.CrossRefGoogle Scholar
  41. Nordmann, A. 2010. Enhancing material nature. In Nano meets Macro: Social Perspectives on Nanoscale Sciences and Technologies, eds. K.L. Kjølberg and F. Wickson, Singapore: Pan Stanford Publishing.Google Scholar
  42. Pelkowski, J. 2008. Hertz on meteorology. In Heinrich Hertz and the Development of Communication, ed. G. Wolfschmidt, 283–309. Norderstedt: Nuncius Hamburgensis.Google Scholar
  43. Pias, C. (ed.). 2003. Cybernetics – Kybernetik. The Macy-Conferences (1946–1953). Vol. 1, 2. Zürich: Diaphanes.Google Scholar
  44. Prigogine, I., and I. Stengers. 1984. Order Out of Chaos. Toronto: Bentam.Google Scholar
  45. Rose, H., and S. Rose. 1976. The Political Economy of Science: Ideology of/in the Natural Sciences. London: Macmillan.Google Scholar
  46. Schwarz, A.E. 1996. Gestalten werden Systeme: Frühe Systemtheorie in der Ökologie. In Systemtheorie in der Ökologie, eds. K. Mathes, B. Breckling, and K. Ekschmidt, 35–45. Landsberg: Ecomed.Google Scholar
  47. Schwarz, A.E. 2009. Escaping from limits to visions of space? In Visionen der Nanotechnologie, eds. A. Ferrari and S. Gammel, 129–142. Berlin: Akademische Verlagsgesellschaft.Google Scholar
  48. Sombart, W. 1996. Liebe Luxus und Kapitalismus. Berlin: Wagenbach.Google Scholar
  49. Vernadsky, V.I. 1929. La Biosphère. Paris: Alcan.Google Scholar
  50. Vernadsky, V.I. 1997. Scientific Thought as a Planetary Phenomenon. Moscow: Nongovernmental Ecological V.I. Vernadsky Foundation.Google Scholar
  51. Voigt, A. 2010. The rise of systems theory in ecology. In Ecology Revisited: Reflecting on Concepts, Advancing Science, eds. A. Schwarz, and K. Jax, Dordrecht: Springer.Google Scholar
  52. Wise, M.N., and C. Smith. 1989. Energy and Empire. Cambridge, MA: Cambridge University Press.Google Scholar
  53. Wittgenstein, L. 1922. Tractatus logico-philosophicus. London: Routledge & Kegan Paul Ltd.Google Scholar
  54. Woods, B. 2007. Political economy of science. In The Blackwell Encyclopedia of Sociology, ed. G. Ritzer, 3436–3439. Oxford: Blackwell Publishing.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institut für PhilosophieTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Department of PhilosophyDarmstadt Technical UniversityDarmstadtGermany

Personalised recommendations