Skip to main content

Vivo-Fluidics and Programmable Matter

  • Conference paper
  • First Online:
Microfluidics Based Microsystems

Abstract

In this talk I will discuss two projects that appear very different but are uniquely unified by the fact that they both involve the use of microfluidics to enable physical control of complex systems. The first of these projects involves our work on Insect Cyborgs or living insects with implanted microdevices. There I will show how we can use implanted microfluidic elements to exert control over the nervous system, turning it on and off on command, by injecting controlled amounts of neurotransmitters. In the second project I will demonstrate how microfluidics can be used to control assembly processes ultimately enabling a new form of “programmable matter”. There I will show how controlling the strength and location of fluidic jets can provide control over fluidic assembly processes enabling affinity tuning, reconfiguration and error correction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Dudley, BIOMECHANICS:Enhanced: Unsteady Aerodynamics. Science 284: p. 1937–1939 (1999).

    Article  Google Scholar 

  2. N. Franceschini, F. Ruffier, and J. Serres, A bio-inspired flying robot sheds light on insect piloting abilities. Curr Bio 17: p. 329–335 (2007).

    Article  Google Scholar 

  3. R. J. Wood, Liftoff of a 60mg flapping-wing MAV. Proc IEEE/RSJ Int Conf Intelli Rob Sys: p. 1889–1894 (2007).

    Google Scholar 

  4. R. J. Wood, The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans Robotics 24: p. 341–347 (2008).

    Article  Google Scholar 

  5. R.J. Wood, S. Avadhanula, R. Sahai, E. Steltz, and R.S. Fearing, Microrobot design using fiber reinforced composites. J Mech Design 130: p. 052304 (2008).

    Article  Google Scholar 

  6. H. Tanaka, K. Hoshino, K. Matsumoto, and I. Shimoyama, Flight dynamics of a butterfly-type ornithopter. Proc IEEE/RSJ Int Conf Intelli Rob Sys: p. 2706–2711 (2005).

    Google Scholar 

  7. E. Steltz, S. Avadhanula, and R. S. Fearing, High lift force with 275 Hz wing beat in MFI. Proc IEEE/RSJ Int Conf Intelli Rob Sys: p. 3987–3992 (2007).

    Google Scholar 

  8. S. P. Sane, The aerodynamics of insect flight. J Exp Biol 206: p. 4191–208 (2003).

    Article  Google Scholar 

  9. D. Erickson and D. Q. Li, Integrated microfluidic devices. Analytica Chimica Acta 507: p. 11–26 (2004).

    Article  Google Scholar 

  10. A. J. Chung and D. Erickson, Engineering insect flight metabolics using immature stage implanted microfluidics. Lab on a Chip 9: p. 669–676 (2009).

    Article  Google Scholar 

  11. J. H. Marden, Maximum Lift Production during Takeoff in Flying Animals. J Exp Biol 130: p. 235–258 (1987).

    Google Scholar 

  12. J. H. Marden, Scaling of maximum net force output by motors used for locomotion. J Exp Biol 208: p. 1653–1664 (2005).

    Article  Google Scholar 

  13. A. J. Chung, D. Kim, and D. Erickson, Electrokinetic microfluidic devices for rapid, low power drug delivery in autonomous microsystems. Lab on a Chip 8: p. 330–338 (2008).

    Article  Google Scholar 

  14. J. T. Santini, M. J. Cima, and R. Langer, A controlled-release microchip. Nature 397: p. 335–338 (1999).

    Article  ADS  Google Scholar 

  15. B. Cordovez, D. Psaltis, and D. Erickson, Trapping and storage of particles in electroactive microwells. Appl Phys Lett 90: p. 024102 (2007).

    Article  ADS  Google Scholar 

  16. A. J. Chung, Y. S. Huh, and D. Erickson, A robust, electrochemically driven microwell drug delivery system for controlled vasopressin release. Biomed Microdev 11: p. 861–867 (2009).

    Article  Google Scholar 

  17. M. Krishnan, M. T. Tolley, H. Lipson, and D. Erickson, Increased robustness for fluidic self-assembly. Phys Fluids 20: p. 1–16 (2008).

    Article  Google Scholar 

  18. M. T. Tolley, M. Krishnan, D. Erickson, and H. Lipson, Dynamically programmable fluidic assembly. Appl Phys Lett 93: p. 1–13 (2008).

    Article  Google Scholar 

  19. M. Krishnan, J. Park, and D. Erickson, Optothermorheological flow manipulation. Optics Lett 34: p. 1976–1978 (2009).

    Article  ADS  Google Scholar 

  20. D. Philp and J. F. Stoddart, Self-assembly in natural and unnatural systems. Angew Chem 35: p. 1155–1196 (1996).

    Google Scholar 

  21. G. M. Whitesides and B. Grzybowski, Self-assembly at all scales. Science 295: p. 2418–2421 (2002).

    Article  ADS  Google Scholar 

  22. E. Winfree, F. R. Liu, L. A. Wenzler, and N. C. Seeman, Design and self-assembly of two-dimensional DNA crystals. Nature 394: p. 539–544 (1998).

    Article  ADS  Google Scholar 

  23. B. Olenyuk, J. A. Whiteford, A. Fechtenkötter, and P. J. Stang, Self-assembly of nanoscale cuboctahedra by coordination chemistry. Nature 398: p. 796–799 (1999).

    Article  ADS  Google Scholar 

  24. P. W. K. Rothemund, Folding DNA to create nanoscale shapes and patterns. Nature 440: p. 297–302 (2006).

    Article  ADS  Google Scholar 

  25. N. Bowden, A. Terfort, J. Carbeck, and G. M. Whitesides, Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science 276: p. 233–235 (1997).

    Article  Google Scholar 

  26. N. Bowden, F. Arias, T. Deng, and G. M. Whitesides, Self-assembly of microscale objects at a liquid/liquid interface through lateral capillary forces. Langmuir 17: p. 1757–1765 (2001).

    Article  Google Scholar 

  27. U. Srinivasan, D. Liepmann, and R. T. Howe, Microstructure to substrate self-assembly using capillary forces. J MEMS 10: p. 17–24 (2001).

    Article  Google Scholar 

  28. J. H. Chung, W. Zheng, T. J. Hatch, and H. O. Jacobs, Programmable reconfigurable self-assembly: Parallel heterogeneous integration of chip-scale components on planar and nonplanar surfaces. J MEMS 15: p. 457–464 (2006).

    Article  Google Scholar 

  29. S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nature Mater 7: p. 581–587 (2008).

    Article  ADS  Google Scholar 

  30. H. J. Yeh and J. S. Smith, Fluidic Self-assembly for the integration of GaAs light-emitting diodes on Si substrates. IEEE Photon Technol Lett 6: p. 706–708 (1994).

    Article  ADS  Google Scholar 

  31. W. Zheng and H. O. Jacobs, Shape-and-solder-directed self-assembly to package semiconductor device segments. Appl Phys Lett 85: p. 3635–3637 (2004).

    Article  ADS  Google Scholar 

  32. M. Golosovsky, Y. Saado, and D. Davidov, Self-assembly of floating magnetic particles into ordered structures: a promising route for the fabrication of tunable photonic band gap materials. Appl Phys Lett 75: p. 4168–4170 (1999).

    Article  ADS  Google Scholar 

  33. M. Tanase, D. M. Silevitch, A. Hultgren, L. A. Bauer, P. C. Searson, G. J. Meyer, and D. H. Reich, Magnetic trapping and self-assembly of multicomponent nanowires. J App Phys 91: p. 8549–8551 (2002).

    Article  ADS  Google Scholar 

  34. S. C. Glotzer, M. J. Solomon, and N. A. Kotov, Self-assembly: from nanoscale to microscale colloids. AIChE J 50: p. 2978–2985 (2004).

    Article  Google Scholar 

  35. Y. G. Li, Y. D. Tseng, S. Y. Kwon, L. D’Espaux, J. S. Bunch, P. L. McEuen, and D. Luo, Controlled assembly of dendrimer-like DNA. Nature Mater. 3: p. 38–42 (2004).

    Article  ADS  Google Scholar 

  36. H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean, DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301: p. 1882–1884 (2003).

    Article  ADS  Google Scholar 

  37. H. L. Chen, R. Schulman, A. Goel, and E. Winfree, Reducing facet nucleation during algorithmic self-assembly. Nano Lett 7: p. 2913–2919 (2007).

    Article  ADS  Google Scholar 

  38. S. Murata, H. Kurokawa, and S. Kokaji. Self-assembling machine. In Proc. IEEE international conference on robotics and automation (ICRA94). San Diego, CA (1994).

    Google Scholar 

  39. P. White, K. Kopanski, and H. Lipson. Stochastic self-reconfigurable cellular robotics. In Proc. IEEE international conference on robotics and automation (ICRA04). New Orleans, LA (2004).

    Google Scholar 

  40. S. Griffith, D. Goldwater, and J. M. Jacobson, Robotics - self-replication from random parts. Nature 437: p. 636–636 (2005).

    Article  ADS  Google Scholar 

  41. S. C. Goldstein, J. D. Cambell, and T. C. Mowry, Programmable matter. Computer 38: p. 99–101 (2005).

    Article  Google Scholar 

  42. E. Klavins, Programmable self-assembly. IEEE Cont Syst Mag 27: p. 43–56 (2007).

    Article  Google Scholar 

  43. M. Krishnan, M. T. Tolley, H. Lipson, and D. Erickson, Hydrodynamically tunable affinities for fluidic assembly. Langmuir 25: p. 3769–3774 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the DARPA, Microsystems Technology Office, Hybrid Insect MEMS (HI-MEMS) program, through the Boyce Thompson Institute for Plant Research and the Defense Sciences Office, Programmable Matter Program. Distribution unlimited. Fundamental research exempt from prepublication controls.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Erickson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Erickson, D. (2010). Vivo-Fluidics and Programmable Matter. In: Kakaç, S., Kosoy, B., Li, D., Pramuanjaroenkij, A. (eds) Microfluidics Based Microsystems. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9029-4_26

Download citation

Publish with us

Policies and ethics