Skip to main content

Applications of Magnetic Labs-on-a-Chip

  • Conference paper
  • First Online:
Book cover Microfluidics Based Microsystems

Abstract

Using magnetic micro- and nanoparticles (beads) in microfluidic chips opens new perspectives for miniaturized applications in analytical sciences. Four important application areas of magnetic particles in microfluidic systems are discussed. The first one is that of manipulation of living cells. The latter can be labeled using magnetic beads that are specifically recognizing certain biomarkers on the cell surface. In this way, a well determined type of cells can be separated out of a complex matrix. Magnetic particles can also be used as substrates in a nucleic acid assay allowing specific detection and application in diagnosis. Immuno-assays represent another vast area of application for magnetic particles. The latter can either be used as mobile substrate in the assay, or the particle can play the role of magnetic detection label. Finally, a last field of application we discuss is the use of magnetic particles held in a microfluidic flow for catalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.H. Lu, E.L. Salabas, and F. Schuth: Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angewandte Chemie-International Edition 46, 1222–1244 (2007)

    Article  Google Scholar 

  2. M.A.M. Gijs: Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluidics and Nanofluidics 1, 22–40 (2004)

    Google Scholar 

  3. N. Pamme: Magnetism and microfluidics. Lab on a Chip 6, 24–38 (2006)

    Article  Google Scholar 

  4. W.A. Bonner, R.G. Sweet, H.R. Hulett, and Herzenbe.La: Fluorescence Activated Cell Sorting. Review of Scientific Instruments 43, 404 (1972)

    Article  ADS  Google Scholar 

  5. R. Manz, M. Assenmacher, E. Pfluger, S. Miltenyi, and A. Radbruch: Analysis and Sorting of Live Cells According to Secreted Molecules, Relocated to a Cell-Surface Affinity Matrix. Proceedings of the National Academy of Sciences of the United States of America 92, 1921–1925 (1995)

    Article  ADS  Google Scholar 

  6. K.H. Han and A.B. Frazier: Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations. Lab on a Chip 6, 265–273 (2006)

    Article  Google Scholar 

  7. D.W. Inglis, R. Riehn, J.C. Sturm, and R.H. Austin: Microfluidic high gradient magnetic cell separation. Journal of Applied Physics 99 (2006)

    Google Scholar 

  8. L.R. Moore, A.R. Rodriguez, P.S. Williams, K. McCloskey, B.J. Bolwell, M. Nakamura, J.J. Chalmers, and M. Zborowski: Progenitor cell isolation with a high-capacity quadrupole magnetic flow sorter. Journal of Magnetism and Magnetic Materials 225, 277–284 (2001)

    Article  ADS  Google Scholar 

  9. N. Xia, T.P. Hunt, B.T. Mayers, E. Alsberg, G.M. Whitesides, R.M. Westervelt, and D.E. Ingber: Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomedical Microdevices 8, 299–308 (2006)

    Article  Google Scholar 

  10. V. Leb, M. Stocher, E. Valentine-Thon, G. Holzl, H. Kessler, H. Stekal, and J. Berg: Fully automated, internally controlled quantification of hepatitis B virus DNA by real-time PCR by use of the MagNA pure LC and LightCycler instruments. Journal of Clinical Microbiology 42, 585–590 (2004)

    Article  Google Scholar 

  11. T. Schlaurman, R. de Boer, R. Patty, M. Kooistra-Smid, and A. van Zwet: Comparative evaluation of in-house manual, and commercial semi-automated and automated DNA extraction platforms in the sample preparation of human stool specimens for a Salmonella enterica 5’-nuclease assay. Journal of Microbiological Methods 71, 238–245 (2007)

    Article  Google Scholar 

  12. M.A.M. Gijs, F. Lacharme, and U. Lehmann: Microfluidic applications of magnetic particles for biological analysis and catalysis. Chemical Reviews (2010)

    Google Scholar 

  13. F. Lacharme, C. Vandevyver, and M.A.M. Gijs: Magnetic bead retention device for full on-chip sandwich immuno-assay. in: 21st IEEE International Conference on Micro Electro Mechanical Systems MEMS 2008, 184–187 (2008) Tucson, AZ, USA.

    Chapter  Google Scholar 

  14. F. Lacharme, C. Vandevyver, and M.A.M. Gijs: Full on-chip nanoliter immunoassay by geometrical magnetic trapping of nanoparticle chains. Analytical Chemistry 80, 2905–2910 (2008)

    Article  Google Scholar 

  15. F. Lacharme, C. Vandevyver, and M.A.M. Gijs: Magnetic beads retention device for sandwich immunoassay: comparison of off-chip and on-chip anti¬body incubation. Microfluidics and Nanofluidics 479–487 (2009)

    Google Scholar 

  16. J. Liu, M. Lawrence, A. Wu, M.L. Ivey, G.A. Flores, K. Javier, J. Bibette, and J. Richard: Field-Induced Structures in Ferrofluid Emulsions. Physical Review Letters 74, 2828–2831 (1995)

    Article  ADS  Google Scholar 

  17. V. Sivagnanam, B. Song, C. Vandevyver, and M.A.M. Gijs: On-chip immunoassay using electrostatic assembly of streptavidin-coated bead micro¬patterns. Analytical Chemistry 81, 6509–6515 (2009)

    Article  Google Scholar 

  18. K. Sarweswaran, W. Hu, P.W. Huber, G.H. Bernstein, and M. Lieberman: Deposition of DNA rafts on cationic SAMs on silicon [100]. Langmuir 22, 11279–11283 (2006)

    Article  Google Scholar 

  19. D.J. Cole-Hamilton: Homogeneous catalysis - new approaches to catalyst separation, recovery, and recycling. Science 299, 1702–1706 (2003)

    Article  ADS  Google Scholar 

  20. R. Abu-Reziq, H. Alper, D.S. Wang, and M.L. Post: Metal supported on dendronized magnetic nanoparticles: Highly selective hydroformylation catalysts. Journal of the American Chemical Society 128, 5279–5282 (2006)

    Article  Google Scholar 

  21. A.G. Hu, G.T. Yee, and W.B. Lin: Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones. Journal of the American Chemical Society 127, 12486–12487 (2005)

    Article  Google Scholar 

  22. S.Z. Luo, X.X. Zheng, H. Xu, X.L. Mi, L. Zhang, and J.P. Cheng: Magnetic nanoparticle-supported Morita-Baylis-Hillan catalysts. Advanced Synthesis & Catalysis 349, 2431–2434 (2007)

    Article  Google Scholar 

  23. P.D. Stevens, G.F. Li, J.D. Fan, M. Yen, and Y. Gao: Recycling of homo¬geneous Pd catalysts using superparamagnetic nanoparticles as novel soluble supports for Suzuki, Heck, and Sonogashira cross-coupling reactions. Chemical Communications 4435–4437 (2005)

    Google Scholar 

  24. Y. Zheng, P.D. Stevens, and Y. Gao: Magnetic nanoparticles as an orthogonal support of polymer resins: Applications to solid-phase Suzuki cross-coupling reactions. Journal of Organic Chemistry 71, 537–542 (2006)

    Article  Google Scholar 

  25. J. Li, Y.M. Zhang, D.F. Han, Q. Gao, and C. Li: Asymmetric transfer hydrogenation using recoverable ruthenium catalyst immobilized into magnetic mesoporous silica. Journal of Molecular Catalysis a-Chemical 298, 31–35 (2009)

    Article  Google Scholar 

  26. J. Lee, D. Lee, E. Oh, J. Kim, Y.P. Kim, S. Jin, H.S. Kim, Y. Hwang, J.H. Kwak, J.G. Park, C.H. Shin, and T. Hyeon: Preparation of a magnetically switchable bioelectrocatalytic system employing cross-linked enzyme aggregates in magnetic mesocellular carbon foam. Angewandte Chemie-International Edition 44, 7427–7432 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin A. M. Gijs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Gijs, M.A.M. (2010). Applications of Magnetic Labs-on-a-Chip. In: Kakaç, S., Kosoy, B., Li, D., Pramuanjaroenkij, A. (eds) Microfluidics Based Microsystems. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9029-4_21

Download citation

Publish with us

Policies and ethics