Applications of Magnetic Labs-on-a-Chip

  • Martin A. M. Gijs
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


Using magnetic micro- and nanoparticles (beads) in microfluidic chips opens new perspectives for miniaturized applications in analytical sciences. Four important application areas of magnetic particles in microfluidic systems are discussed. The first one is that of manipulation of living cells. The latter can be labeled using magnetic beads that are specifically recognizing certain biomarkers on the cell surface. In this way, a well determined type of cells can be separated out of a complex matrix. Magnetic particles can also be used as substrates in a nucleic acid assay allowing specific detection and application in diagnosis. Immuno-assays represent another vast area of application for magnetic particles. The latter can either be used as mobile substrate in the assay, or the particle can play the role of magnetic detection label. Finally, a last field of application we discuss is the use of magnetic particles held in a microfluidic flow for catalytic applications.


Magnetic Nanoparticles Magnetic Particle Magnetic Bead Microfluidic Chip Microfluidic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.H. Lu, E.L. Salabas, and F. Schuth: Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angewandte Chemie-International Edition 46, 1222–1244 (2007)CrossRefGoogle Scholar
  2. 2.
    M.A.M. Gijs: Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluidics and Nanofluidics 1, 22–40 (2004)Google Scholar
  3. 3.
    N. Pamme: Magnetism and microfluidics. Lab on a Chip 6, 24–38 (2006)CrossRefGoogle Scholar
  4. 4.
    W.A. Bonner, R.G. Sweet, H.R. Hulett, and Herzenbe.La: Fluorescence Activated Cell Sorting. Review of Scientific Instruments 43, 404 (1972)ADSCrossRefGoogle Scholar
  5. 5.
    R. Manz, M. Assenmacher, E. Pfluger, S. Miltenyi, and A. Radbruch: Analysis and Sorting of Live Cells According to Secreted Molecules, Relocated to a Cell-Surface Affinity Matrix. Proceedings of the National Academy of Sciences of the United States of America 92, 1921–1925 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    K.H. Han and A.B. Frazier: Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations. Lab on a Chip 6, 265–273 (2006)CrossRefGoogle Scholar
  7. 7.
    D.W. Inglis, R. Riehn, J.C. Sturm, and R.H. Austin: Microfluidic high gradient magnetic cell separation. Journal of Applied Physics 99 (2006)Google Scholar
  8. 8.
    L.R. Moore, A.R. Rodriguez, P.S. Williams, K. McCloskey, B.J. Bolwell, M. Nakamura, J.J. Chalmers, and M. Zborowski: Progenitor cell isolation with a high-capacity quadrupole magnetic flow sorter. Journal of Magnetism and Magnetic Materials 225, 277–284 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    N. Xia, T.P. Hunt, B.T. Mayers, E. Alsberg, G.M. Whitesides, R.M. Westervelt, and D.E. Ingber: Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomedical Microdevices 8, 299–308 (2006)CrossRefGoogle Scholar
  10. 10.
    V. Leb, M. Stocher, E. Valentine-Thon, G. Holzl, H. Kessler, H. Stekal, and J. Berg: Fully automated, internally controlled quantification of hepatitis B virus DNA by real-time PCR by use of the MagNA pure LC and LightCycler instruments. Journal of Clinical Microbiology 42, 585–590 (2004)CrossRefGoogle Scholar
  11. 11.
    T. Schlaurman, R. de Boer, R. Patty, M. Kooistra-Smid, and A. van Zwet: Comparative evaluation of in-house manual, and commercial semi-automated and automated DNA extraction platforms in the sample preparation of human stool specimens for a Salmonella enterica 5’-nuclease assay. Journal of Microbiological Methods 71, 238–245 (2007)CrossRefGoogle Scholar
  12. 12.
    M.A.M. Gijs, F. Lacharme, and U. Lehmann: Microfluidic applications of magnetic particles for biological analysis and catalysis. Chemical Reviews (2010)Google Scholar
  13. 13.
    F. Lacharme, C. Vandevyver, and M.A.M. Gijs: Magnetic bead retention device for full on-chip sandwich immuno-assay. in: 21st IEEE International Conference on Micro Electro Mechanical Systems MEMS 2008, 184–187 (2008) Tucson, AZ, USA.CrossRefGoogle Scholar
  14. 14.
    F. Lacharme, C. Vandevyver, and M.A.M. Gijs: Full on-chip nanoliter immunoassay by geometrical magnetic trapping of nanoparticle chains. Analytical Chemistry 80, 2905–2910 (2008)CrossRefGoogle Scholar
  15. 15.
    F. Lacharme, C. Vandevyver, and M.A.M. Gijs: Magnetic beads retention device for sandwich immunoassay: comparison of off-chip and on-chip anti¬body incubation. Microfluidics and Nanofluidics 479–487 (2009)Google Scholar
  16. 16.
    J. Liu, M. Lawrence, A. Wu, M.L. Ivey, G.A. Flores, K. Javier, J. Bibette, and J. Richard: Field-Induced Structures in Ferrofluid Emulsions. Physical Review Letters 74, 2828–2831 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    V. Sivagnanam, B. Song, C. Vandevyver, and M.A.M. Gijs: On-chip immunoassay using electrostatic assembly of streptavidin-coated bead micro¬patterns. Analytical Chemistry 81, 6509–6515 (2009)CrossRefGoogle Scholar
  18. 18.
    K. Sarweswaran, W. Hu, P.W. Huber, G.H. Bernstein, and M. Lieberman: Deposition of DNA rafts on cationic SAMs on silicon [100]. Langmuir 22, 11279–11283 (2006)CrossRefGoogle Scholar
  19. 19.
    D.J. Cole-Hamilton: Homogeneous catalysis - new approaches to catalyst separation, recovery, and recycling. Science 299, 1702–1706 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    R. Abu-Reziq, H. Alper, D.S. Wang, and M.L. Post: Metal supported on dendronized magnetic nanoparticles: Highly selective hydroformylation catalysts. Journal of the American Chemical Society 128, 5279–5282 (2006)CrossRefGoogle Scholar
  21. 21.
    A.G. Hu, G.T. Yee, and W.B. Lin: Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones. Journal of the American Chemical Society 127, 12486–12487 (2005)CrossRefGoogle Scholar
  22. 22.
    S.Z. Luo, X.X. Zheng, H. Xu, X.L. Mi, L. Zhang, and J.P. Cheng: Magnetic nanoparticle-supported Morita-Baylis-Hillan catalysts. Advanced Synthesis & Catalysis 349, 2431–2434 (2007)CrossRefGoogle Scholar
  23. 23.
    P.D. Stevens, G.F. Li, J.D. Fan, M. Yen, and Y. Gao: Recycling of homo¬geneous Pd catalysts using superparamagnetic nanoparticles as novel soluble supports for Suzuki, Heck, and Sonogashira cross-coupling reactions. Chemical Communications 4435–4437 (2005)Google Scholar
  24. 24.
    Y. Zheng, P.D. Stevens, and Y. Gao: Magnetic nanoparticles as an orthogonal support of polymer resins: Applications to solid-phase Suzuki cross-coupling reactions. Journal of Organic Chemistry 71, 537–542 (2006)CrossRefGoogle Scholar
  25. 25.
    J. Li, Y.M. Zhang, D.F. Han, Q. Gao, and C. Li: Asymmetric transfer hydrogenation using recoverable ruthenium catalyst immobilized into magnetic mesoporous silica. Journal of Molecular Catalysis a-Chemical 298, 31–35 (2009)CrossRefGoogle Scholar
  26. 26.
    J. Lee, D. Lee, E. Oh, J. Kim, Y.P. Kim, S. Jin, H.S. Kim, Y. Hwang, J.H. Kwak, J.G. Park, C.H. Shin, and T. Hyeon: Preparation of a magnetically switchable bioelectrocatalytic system employing cross-linked enzyme aggregates in magnetic mesocellular carbon foam. Angewandte Chemie-International Edition 44, 7427–7432 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Laboratory of MicrosystemsEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations