Advertisement

Perfusion Based Cell Culture Chips

  • A. Heiskanen
  • J. Emnéus
  • M. Dufva
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures and tissue like structuring of the cultures. However, as this chapter illustrates, many issues remain to be identified regarding perfusion cell culture such as design, material choice and how to use these systems before they will be widespread amongst biomedical researchers.

Keywords

Microfluidic Channel Cell Base Assay Thermoplastic Polymer Perfusion Culture Metabolic Waste 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The EU FP7 NMP project EXCELL is kindly acknowledged for financial support.

References

  1. 1.
    R.G. Harrison, Observations on the living developing nerve fiber, The Anatomical Record, 1, 116–118 (1907).CrossRefGoogle Scholar
  2. 2.
    P.S. Dittrich and A. Manz, Lab-on-a-chip: Microfluidics in drug discovery, Nature Reviews Drug Discovery, 5(3), 210–218 (2006).CrossRefGoogle Scholar
  3. 3.
    J. El-Ali, P.K. Sorger and K.F. Jensen, Cells on chips, Nature, 442(7101), 403–412 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    G.M. Walker, H.C. Zeringue and D.J. Beebe, Microenvironment design considerations for cellular scale studies, Lab on a Chip, 4(2), 91–97 (2004).CrossRefGoogle Scholar
  5. 5.
    A. Tourovskaia, X. Figueroa-Masot and A. Folch, Differentiation-on-a-chip: A microfluidic platform for long-term cell culture studies, Lab on a Chip, 5(1), 14–19 (2005).CrossRefGoogle Scholar
  6. 6.
    B.J. Kane, M.J. Zinner, M.L. Yarmush and M. Toner, Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes, Analytical Chemistry, 78(13), 4291–4298 (2006).CrossRefGoogle Scholar
  7. 7.
    S. Petronis, M. Stangegaard, C.B.V. Christensen and M. Dufva, Transparent polymeric cell culture chip with integrated temperature control and uniform media perfusion, Biotechniques, 40(3), 368–376 (2006).CrossRefGoogle Scholar
  8. 8.
    A. Heiskanen, C. Spégel, J. Tønnesen, Z. Fohlerova, L. Goulart, J. Hansen, M. Kokaia, T. Ruzgas, M. Dufva and J. Emnéus, Development of a microfluidic on-line culture system for combined electrochemical and optical real-time detection of cellular processes, Proceeding of the Twelfth International Con¬ference on Miniaturized Systems for Chemistry and Life Sciences, October 12–16, 2008, San Diego, CA.Google Scholar
  9. 9.
    P.J. Hung, P.J. Lee, P. Sabounchi, R. Lin and L.P. Lee, Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays, Biotechnology and Bioengineering, 89(1), 1–8 (2005).CrossRefGoogle Scholar
  10. 10.
    M. Stangegaard, Z. Wang, J.P. Kutter, M. Dufva and A. Wolff, Whole genome expression profiling using DNA microarray for determining biocompatibility of polymeric surfaces, Molecular Biosystems, 2(9), 421–428 (2006).CrossRefGoogle Scholar
  11. 11.
    J.N. Lee, X. Jiang, D. Ryan and G.M. Whitesides, Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane), Langmuir: the ACS journal of surfaces and colloids, 20(26), 11684–11691 (2004).CrossRefGoogle Scholar
  12. 12.
    L. Kim, Y.C. Toh, J. Voldman and H. Yu, A practical guide to microfluidic perfusion culture of adherent mammalian cells, Lab on a Chip, 7(6), 681–694 (2007).CrossRefGoogle Scholar
  13. 13.
    M.W. Toepke and D.J. Beebe, Pdms absorption of small molecules and con¬sequences in microfluidic applications, Lab on a Chip, 6(12), 1484–1486 (2006).CrossRefGoogle Scholar
  14. 14.
    R. Mukhopadhyay, When pdms isn’t the best, Analytical Chemistry, 79(9), 3248–3253 (2007).CrossRefGoogle Scholar
  15. 15.
    K.J. Regehr, M. Domenech, J.T. Koepsel, K.C. Carver, S.J. Ellison-Zelski, W.L. Murphy, L.A. Schuler, E.T. Alarid and D.J. Beebe, Biological implications of polydimethylsiloxane-based microfluidic cell culture, Lab on a Chip, 9(15), 2132–2139 (2009).CrossRefGoogle Scholar
  16. 16.
    R. Mukhopadhyay, Hard-soft microfluidic device bypasses drawbacks of pdms, Analytical Chemistry, 81(13), 5108–5108 (2009).CrossRefGoogle Scholar
  17. 17.
    D.C. Duffy, J.C. McDonald, O.J.A. Schueller and G.M. Whitesides, Rapid prototyping of microfluidic systems in poly(dimethylsiloxane), Analytical Chemistry, 70(23), 4974–4984 (1998).CrossRefGoogle Scholar
  18. 18.
    K. Haubert, T. Drier and D. Beebe, Pdms bonding by means of a portable, low-cost corona system, Lab on a Chip, 6(12), 1548–1549 (2006).CrossRefGoogle Scholar
  19. 19.
    Folch Lab, 3d microfluidic devices, Research/Technology Development, (2007), Available from: http://faculty.washington.edu/afolch/FolchLabResearchProjects.htm.
  20. 20.
    H. Shadpour, H. Musyimi, J.F. Chen and S.A. Soper, Physiochemical properties of various polymer substrates and their effects on microchip electrophoresis performance, 18th International Symposium on MicroScale Bioseparation (MSB 2005), Feb 12–17, 2005, New Orleans, LA.Google Scholar
  21. 21.
    H. Becker and C. Gartner, Polymer microfabrication methods for microfluidic analytical applications, Electrophoresis, 21(1), 12–26 (2000).CrossRefGoogle Scholar
  22. 22.
    H. Becker and L.E. Locascio, Polymer microfluidic devices, Talanta, 56(2), 267–287 (2002).CrossRefGoogle Scholar
  23. 23.
    D. Snakenborg, H. Klank and J.P. Kutter, Microstructure fabrication with a co2 laser system, Journal of Micromechanics and Microengineering, 14(2), 182–189 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    P. McKeown, From micro- to nano-machining - towards the nanometre era, Sensor Review, 16(2), 4–10 (1996).MathSciNetCrossRefGoogle Scholar
  25. 25.
    I. Meyvantsson and D.J. Beebe, Cell culture models in microfluidic systems, Annual Review of Analytical Chemistry, 1, 423–449 (2008).ADSCrossRefGoogle Scholar
  26. 26.
    H.F. Cui, J.S. Ye, Y. Chen, S.C. Chong and F.S. Sheu, Microelectrode array biochip: Tool for in vitro drug screening based on the detection of a drug effect on dopamine release from pc12 cells, Analytical Chemistry, 78(18), 6347–6355 (2006).CrossRefGoogle Scholar
  27. 27.
    N.L. Jeon, H. Baskaran, S.K.W. Dertinger, G.M. Whitesides, L. Van de Water and M. Toner, Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device, Nature Biotechnology, 20(8), 826–830 (2002).Google Scholar
  28. 28.
    E.M. Lucchetta, J.H. Lee, L.A. Fu, N.H. Patel and R.F. Ismagilov, Dynamics of drosophila embryonic patterning network perturbed in space and time using microfluidics, Nature, 434(7037), 1134–1138 (2005).ADSCrossRefGoogle Scholar
  29. 29.
    L. Kim, M.D. Vahey, H.Y. Lee and J. Voldman, Microfluidic arrays for logarithmically perfused embryonic stem cell culture, Lab on a Chip, 6(3), 394–406 (2006).CrossRefGoogle Scholar
  30. 30.
    C.B. Maddox, L. Rasmussen and E.L. White, Adapting cell-based assays to the high-throughput screening platform: Problems encountered and lessons learned, Journal of the Association for Laboratory Automation, 13(3), 168–173 (2008).CrossRefGoogle Scholar
  31. 31.
    D.G. Anderson, S. Levenberg and R. Langer, Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells, Nature Biotechnology, 22(7), 863–866 (2004).CrossRefGoogle Scholar
  32. 32.
    P. Skafte-Pedersen, D. Sabourin, M. Dufva and D. Snakenborg, Multi-channel peristaltic pump for microfluidic applications featuring monolithic pdms inlay, Lab on a Chip, 9(20), 3003–3006 (2009).CrossRefGoogle Scholar
  33. 33.
    K.R. King, S.H. Wang, D. Irimia, A. Jayaraman, M. Toner and M.L. Yarmush, A high-throughput microfluidic real-time gene expression living cell array, Lab on a Chip, 7(1), 77–85 (2007).CrossRefGoogle Scholar
  34. 34.
    R. Gomez-Sjoberg, A.A. Leyrat, D.M. Pirone, C.S. Chen and S.R. Quake, Versatile, fully automated, microfluidic cell culture system, Analytical Chemistry, 79(22), 8557–8563 (2007).CrossRefGoogle Scholar
  35. 35.
    I. Meyvantsson, J.W. Warrick, S. Hayes, A. Skoien and D.J. Beebe, Automated cell culture in high density tubeless microfluidic device arrays, Lab on a Chip, 8(5), 717–724 (2008).CrossRefGoogle Scholar
  36. 36.
    H.M. Yu, C.M. Alexander and D.J. Beebe, A plate reader-compatible micro¬channel array for cell biology assays, Lab on a Chip, 7(3), 388–391 (2007).CrossRefGoogle Scholar
  37. 37.
    B.A. Justice, N.A. Badr and R.A. Felder, 3d cell culture opens new dimen¬sions in cell-based assays, Drug Discovery Today, 14(1–2), 102–107 (2009).CrossRefGoogle Scholar
  38. 38.
    M.H. Wu, S.B. Huang, Z.F. Cui, Z. Cui and G.B. Lee, Development of perfusion-based micro 3-d cell culture platform and its application for high throughput drug testing, Sensors and Actuators B-Chemical, 129(1), 231–240 (2008).CrossRefGoogle Scholar
  39. 39.
    Y.C. Toh, C. Zhang, J. Zhang, Y.M. Khong, S. Chang, V.D. Samper, D. van Noort, D.W. Hutmacher and H.R. Yu, A novel 3d mammalian cell perfusion-culture system in microfluidic channels, Lab on a Chip, 7(3), 302–309 (2007).CrossRefGoogle Scholar
  40. 40.
    T. Frisk, S. Rydholm, H. Andersson, G. Stemme and H. Brismar, A concept for miniaturized 3-d cell culture using an extracellular matrix gel, Electrophoresis, 26(24), 4751–4758 (2005).CrossRefGoogle Scholar
  41. 41.
    T. Frisk, S. Rydholm, T. Liebmann, H.A. Svahn, G. Stemme and H. Brismar, A microfluidic device for parallel 3-d cell cultures in asymmetric environments, Electrophoresis, 28(24), 4705–4712 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Micro- and NanotechnologyTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations