Microfluidic Lab-on-a-Chip Devices for Biomedical Applications

  • Dongqing Li
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


Microfluidics is key to miniaturize bio-chemical and biomedical methods and processes into chip based technology. Basics of electrokinetic microfluidics will be reviewed first. Three types of lab-on-a-chip devices, PCR lab-on-a-chip, flow cytometer lab-on-a-chip and immunoassay lab-on-a-chip are discussed here. The working principle, key microfluidic processes and the current status of these lab-on-a-chip devices are reviewed.


Polymerase Chain Reaction Microfluidic Chip Electroosmotic Flow Electrokinetic Flow Polymerase Chain Reaction Chip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dongqing Li, “Electrokinetics in Microfluidics”, Academic, London, 2004.Google Scholar
  2. 2.
    G. Hu, Q. Xiang, R. Fu, B. Xu, R. Venditti, and D. Li, Electrokinetically controlled real-time PCR in microchannel using Joule heating effect. Analytica Chimica Acta, 557, 146–151 (2006).CrossRefGoogle Scholar
  3. 3.
    Y. Liu, C. B. Rauch, R. L. Stevens, R. Lenigk, J. Yang, D. B. Rhine, and P. Grodzinski, DNA amplification and hybridization assays in integrated plastic monolithic devices, Analytical Chemistry, 74, 3063 (2002).CrossRefGoogle Scholar
  4. 4.
    Y. C. Lin, C. Yang, and M. Y. Huang, Simulation and experimental validation of micro polymerase chain reaction chips, Sensors and Actuators B: Chemical, 71, 127 (2000).CrossRefGoogle Scholar
  5. 5.
    H. Nagai, Y. Murakami, K. Yokoyama, E. Tamiya, and Y. Morita, Development of microchamber array for picoliter PCR. Analytical Chemistry, 73, 1043 (2001).CrossRefGoogle Scholar
  6. 6.
    Y. Matsubara, K. Kerman, M. Kobayashi, S. Yamamura, Y. Morita, Y. Takamura, and E. Tamiya, On-chip nanoliter-volume multiplex TaqMan polymerase chain reaction from a single copy based on counting fluorescence released microchambers. Analytical Chemistry, 76, 6434 (2004).CrossRefGoogle Scholar
  7. 7.
    M. U. Kopp, A. Mello, and A. Manz, Chemical amplification: continuous-flow PCR on a chip, Science 280, 1046 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    Schneegass, R. Brautigam, and J. M. Kohler, Miniaturized flow through PCR with different temperature types in a silicon chip thermocycler. Lab on a Chip, 1, 42–9 (2001).CrossRefGoogle Scholar
  9. 9.
    P. J. Obeid, T. K. Christopoulos, H. J. Crabtree, and C. J. Backhouse, Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription polymerase chain reaction with cycle number selection, Analytical Chemistry, 75, 288 (2003).CrossRefGoogle Scholar
  10. 10.
    M. Hashimoto, P. C. Chen, M. W. Mitchell, D. E. Nikitopoulos, S. A. Soper, and M. C. Murphy, Rapid PCR in a continuous flow device, Lab on a Chip 4, 638 (2004).CrossRefGoogle Scholar
  11. 11.
    J. Liu, M. Enzelberger, and S. Quake, A nanoliter rotary device for polymerase chain reaction, Electrophoresis, 23, 1531 (2002).CrossRefGoogle Scholar
  12. 12.
    K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo, and H. Misawa, A heater-integrated transparent microchannel chip for continuous flow PCR, Sensors and Actuators B: Chemical, 84, 283 (2002).CrossRefGoogle Scholar
  13. 13.
    Q. Xiang, B. Xu, and D. Li, Miniature real time PCR on chip with multi-channel fiber optical fluorescence detection module, Biomedical Microdevices, 9, 443–449 (2007).CrossRefGoogle Scholar
  14. 14.
    Q. Xiang, B. Xu, R. Fu, and D. Li, Real Time PCR on Disposable PDMS chip with a miniaturized thermal cycler, Biomedical Microdevices, 7, 273–279 (2005).CrossRefGoogle Scholar
  15. 15.
    Y. C. Tung, M. Zhang, C. T. Lin, K. Kurabayashi, and S. J. Skerlos. PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes. Sensors and Actuators B: Chemical, 98, 356–367 (2004).Google Scholar
  16. 16.
    L. M. Fu, R. J. Yang, C. H. Lin, Y. J. Pan, and G. B. Lee, Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection. Analytica Chimica Acta, 507, 163–169 (2004).CrossRefGoogle Scholar
  17. 17.
    Q. Xiang, X. Xuan, B. Xu, and D. Li, Multi-functional particle detection with embedded optical fibers in a poly(dimethylsiloxane) chip, Instrumentation Science & Technology, 33, 597–607 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    X. Wu, Y. Kang, Y. N. Wang, D. Xu, Deyu Li, and Dongqing Li, Microfluidic differential resistive pulse sensor, Electrophoresis, 29, 2754–2759 (2008).Google Scholar
  19. 19.
    X. Wu, C. Chon, Y. Kang, Y. Wang, and D. Li, Simultaneous particle counting and detecting on a chip, Lab-on-Chip, 8, 1943–1949 (2008).CrossRefGoogle Scholar
  20. 20.
    Y. Kang, X. Wu, Y. Wang, and D. Li, On-chip fluorescence-activated particle counting and sorting system, Analytica Chimica Acta, 626, 97–103 (2008).CrossRefGoogle Scholar
  21. 21.
    Y. N. Wang, Y. Kang, D. Xu, L. Barnett, S. A. Kalams, Deyu Li, and Dongqing Li, On-chip total counting and percentage determination of CD4+ T lymphocytes, Lab-Chip, 8, 309–315 (2008).CrossRefGoogle Scholar
  22. 22.
    D. L. Stokes, G. D. Griffin, and T. Vo-Dinh, Detection of E. coli using a microfluidics-based antibody biochip detection system, Fresenius Journal of Analytical Chemistry, 369, 295–301 (2001).CrossRefGoogle Scholar
  23. 23.
    Dodge, K. Fluri, E. Verpoorte, and N. F. de Rooij, Electrokinetically driven microfluidic chips with surface-modified chambers for heterogeneous immunoassays, Analytical Chemistry, 73, 3400–3409.Google Scholar
  24. 24.
    S. K. Sia, V. Linder, B. A. Parviz, A. Siegel, and G. M. Whitesides, An integrated approach to a portable and low-cost immunoassay for resource-poor settings, Angewandte Chemie-International Edition, 43, 498–502 (2004).CrossRefGoogle Scholar
  25. 25.
    E. P. Kartalov, J. F. Zhong, A. Scherer, S. R. Quake, C. R. Taylor, and W. F. Anderson, High-throughput multi-antigen microfluidics fluorescence immunoassays, BioTechniques, 40, 85–90 (2006).CrossRefGoogle Scholar
  26. 26.
    Y. Gao, F. Lin, G. Hu, P. Sherman, and D. Li, Development of a novel electrokinetically-driven microfluidic immunoassay for detection of Helicobacter pylori, Analytica Chimica Acta, 543, 109–116 (2005).CrossRefGoogle Scholar
  27. 27.
    G. Hu, Y. Gao, P. Sherman, and D. Li, A Microfluidic chip for heterogeneous immunoassay using automatic electrokinetical control, Microfluidics and Nanofluidics, 1, 346–355 (2005).CrossRefGoogle Scholar
  28. 28.
    Y. Gao, G. Hu, P. Sherman, and D. Li, An automatic electrokinetically- controlled immunoassay lab-on-a-chip for simultaneous detection of multiple microbial antigens, Biomed Microdevices, 7, 301–312 (2005).CrossRefGoogle Scholar
  29. 29.
    Y. Gao, P. Sherman, Y. Sun, and D. Li, A multiplexed high-throughput electrokinetically-controlled immunoassay for the detection of bacterial antibodies in human serum, Analytica Chimica Acta, 606, 98–107 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Mechanical & Mechatronics EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations